VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Optimizing Performance and Storage of Memory-Mapped Persistent Data Structures

dc.contributor.authorYoussef, Karimen
dc.contributor.authorRaqibul Islam, Abdullah A.en
dc.contributor.authorIwabuchi, Keitaen
dc.contributor.authorFeng, Wu-chunen
dc.contributor.authorPearce, Rogeren
dc.date.accessioned2024-03-04T15:13:37Zen
dc.date.available2024-03-04T15:13:37Zen
dc.date.issued2022-01-01en
dc.description.abstractPersistent data structures represent a core component of high-performance data analytics. Multiple data processing systems persist data structures using memory-mapped files. Memory-mapped file I/O provides a productive and unified programming interface to different types of storage systems. However, it suffers from multiple limitations, including performance bottlenecks caused by system-wide configurations and a lack of support for efficient incremental versioning. There-fore, many such systems only support versioning via full-copy snapshots, resulting in poor performance and storage capacity bottlenecks. To address these limitations, we present Privateer 2.0, a virtual memory and storage interface that optimizes performance and storage capacity for versioned persistent data structures. Privateer 2.0 improves over the previous version by supporting userspace virtual memory management and block compression. We integrated Privateer 2.0 into Metall, a C++ persistent data structure allocator, and LMDB, a widely-used key-value store database. Privateer 2.0 yielded up to 7.5× speedup and up to 300× storage space reduction for Metall incremental snapshots and 1.25× speedup with 11.7× storage space reduction for LMDB incremental snapshots.en
dc.description.versionAccepted versionen
dc.format.extentPages 1-7en
dc.identifier.doihttps://doi.org/10.1109/HPEC55821.2022.9926392en
dc.identifier.isbn9781665497862en
dc.identifier.orcidFeng, Wu-chun [0000-0002-6015-0727]en
dc.identifier.urihttps://hdl.handle.net/10919/118252en
dc.publisherIEEEen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleOptimizing Performance and Storage of Memory-Mapped Persistent Data Structuresen
dc.title.serial2022 IEEE High Performance Extreme Computing Conference, HPEC 2022en
dc.typeConference proceedingen
dc.type.otherConference Proceedingen
pubs.finish-date2022-09-23en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.start-date2022-09-19en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Feng-HPEC-Privateer.pdf
Size:
471.03 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: