Feature selection of gene expression data for Cancer classification using double RBF-kernels

dc.contributor.authorLiu, Shenghuien
dc.contributor.authorXu, Chunruien
dc.contributor.authorZhang, Yusenen
dc.contributor.authorLiu, Jiaguoen
dc.contributor.authorYu, Binen
dc.contributor.authorLiu, Xiaopingen
dc.contributor.authorDehmer, Matthiasen
dc.date.accessioned2018-11-05T13:11:31Zen
dc.date.available2018-11-05T13:11:31Zen
dc.date.issued2018-10-29en
dc.date.updated2018-11-04T04:44:24Zen
dc.description.abstractBackground Using knowledge-based interpretation to analyze omics data can not only obtain essential information regarding various biological processes, but also reflect the current physiological status of cells and tissue. The major challenge to analyze gene expression data, with a large number of genes and small samples, is to extract disease-related information from a massive amount of redundant data and noise. Gene selection, eliminating redundant and irrelevant genes, has been a key step to address this problem. Results The modified method was tested on four benchmark datasets with either two-class phenotypes or multiclass phenotypes, outperforming previous methods, with relatively higher accuracy, true positive rate, false positive rate and reduced runtime. Conclusions This paper proposes an effective feature selection method, combining double RBF-kernels with weighted analysis, to extract feature genes from gene expression data, by exploring its nonlinear mapping ability.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBMC Bioinformatics. 2018 Oct 29;19(1):396en
dc.identifier.doihttps://doi.org/10.1186/s12859-018-2400-2en
dc.identifier.urihttp://hdl.handle.net/10919/85639en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe Author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleFeature selection of gene expression data for Cancer classification using double RBF-kernelsen
dc.title.serialBMC Bioinformaticsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
12859_2018_Article_2400.pdf
Size:
5.1 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: