Autonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedback

dc.contributor.authorAhmad, Syed Amaaren
dc.contributor.committeechairSilva, Luiz A.en
dc.contributor.committeechairda Silva, Claudio R. C. M.en
dc.contributor.committeememberMacKenzie, Allen B.en
dc.contributor.committeememberBall, Sheryl B.en
dc.contributor.committeememberYang, Yalingen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2014-03-20T08:00:28Zen
dc.date.available2014-03-20T08:00:28Zen
dc.date.issued2014-03-19en
dc.description.abstractLTE heterogeneous wireless networks promise significant increase in data rates and improved coverage through (i) the deployment of relays and cell densification, (ii) carrier aggregation to enhance bandwidth usage and (iii) by enabling nodes to have dual connectivity. These emerging cellular networks are complex and large systems which are difficult to optimize with centralized control and where mobiles need to balance spectral efficiency, power consumption and fairness constraints. In this dissertation we focus on how decentralized and autonomous mobiles in multihop cellular systems can optimize their own local objectives by taking into account end-to-end or network-wide conditions. We propose several link-adaptive schemes where nodes can adjust their transmit power, aggregate carriers and select points of access to the network (relays and/or macrocell base stations) autonomously, based on both local and global conditions. Under our approach, this is achieved by disseminating the dynamic congestion level in the backhaul links of the points of access. As nodes adapt locally, the congestion levels in the backhaul links can change, which can in turn induce them to also change their adaptation objectives. We show that under our schemes, even with this dynamic congestion feedback, nodes can distributedly converge to a stable selection of transmit power levels and points of access. We also analytically derive the transmit power levels at the equilibrium points for certain cases. Moreover, through numerical results we show that the corresponding system throughput is significantly higher than when nodes adapt greedily following traditional link layer optimization objectives. Given the growing data rate demand, increasing system complexity and the difficulty of implementing centralized cross-layer optimization frameworks, our work simplifies resource allocation in heterogeneous cellular systems. Our work can be extended to any multihop wireless system where the backhaul link capacity is limited and feedback on the dynamic congestion levels at the access points is available.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:2284en
dc.identifier.urihttp://hdl.handle.net/10919/46725en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectHeterogeneous networksen
dc.subjectEnd-to-end goalsen
dc.subjectPower controlen
dc.subjectCarrier aggregationen
dc.subjectTopology adaptationsen
dc.subjectDynamic Systemsen
dc.subjectDual Connectivityen
dc.titleAutonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedbacken
dc.typeDissertationen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ahmad_SA_D_2014.pdf
Size:
550.55 KB
Format:
Adobe Portable Document Format