Credibility of a Person-Centered Design Decision-making Prototype: Spaces for Older Persons with Vision Loss

TR Number

Date

2016-06-29

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Decline in both visual acuity and visual performance is a fact of life for older people and their increasing share of the population requires that buildings be designed with their visual needs in mind. As their field of vision decreases, people find it harder to identify an objects location, distance, and orientation. Elderly people with vision impairments usually find it harder to perform daily activities such as navigation through indoor spaces. Functional vision can be improved by modifying the design of spaces, for example, with better lighting. However, architects typically do not know how to take the needs of the visually impaired into account in their design process, or simply do not think of doing so. The researcher designed and feasibility-tested a prototype person-centered tool to help architects judge how appropriate a designed space will be for visually impaired people. The study was conducted as a qualitative mixed-methodology research analysis. The researcher used knowledge from literature interpretation to rationalize the development of a person-centered prototype. The researcher immersed design PhD students and vision science experts to inform the prototyping process. Along with an expert group of design and vision science professionals, the researcher beta-tested the prototype during a mock design-process scenario. The researcher also selected a small group of industry experts to participate in open-ended interviews on post-use demonstrations to qualitatively triangulate the findings on the prototypes usability. The study summarizes the feasibility including the challenges of using the prototype for professional purposes and suggests improvement.

Description

Keywords

Central Vision Loss Algorithm, Decision Support System (DSS), Design Assistance Tool, Older Persons, Peripheral Vision Loss Algorithm, Photometric 2D Representation of Human Vision

Citation