Interlaminar Deformation at a Hole in Laminated Composites: A Detailed Experimental Investigation Using Moire Interferometry

dc.contributor.authorMollenhauer, David Hiltonen
dc.contributor.committeecochairReifsnider, Kenneth L.en
dc.contributor.committeecochairPost, Danielen
dc.contributor.committeememberMcCoy, James R.en
dc.contributor.committeememberKriz, Ronald D.en
dc.contributor.committeememberKohler, Werner E.en
dc.contributor.departmentEngineering Science and Mechanicsen
dc.description.abstractThe deformation on cylindrical surfaces of holes in tensile loaded laminated composite specimens was measured using new moire interferometry techniques. These new techniques were developed and evaluated using a 7075-T6 aluminum control specimen. Grating replication techniques were developed for replicating high quality diffraction gratings onto the cylindrical surfaces of holes. Replicas of the cylindrical specimen gratings (undeformed and deformed) were fabricated onto circular steel sectors. Narrow angular regions of these sector gratings were directly evaluated in a moire interferometer. This moire interferometry approach eliminated potential sources of error associated with other moire interferometry approaches. Two composite tensile specimens, fabricated from IM7/5250-4 pre-preg with ply layups of [0₄/90₄]<sub>3s</sub> and [+30₂/-30₂/90₄]<sub>3s</sub>, were examined using the newly developed moire interferometry techniques. Circumferential and thickness direction displacement fringe patterns (each 3 degrees wide) were assembled into 90 degrees wide mosaics around the hole periphery for both composite specimens. Distributions of strain were calculated with high confidence on a sub-ply basis at select angular locations. Measured strain behavior was complex and displayed ply-by-ply trends. Large ply related variations in the circumferential strain were observed at certain angular locations around the periphery of the holes in both composites. Extremely large ply-by-ply variations of the shear strain were also documented in both composites. Peak values of shear strain approached 30 times the applied far-field axial strain. Post-loaded viscoelastic shearing strains were recorded that were associated with the regions of large load-induced shearing strains. Large ply-grouping related variations in the thickness direction strain were observed in the [+30₂/-30₂/90₄]<sub>3s</sub> specimen. An important large-scale trend was observed where the thickness direction strain tended to be more tensile near the outside faces of the laminate than near the mid-ply region. The measured strains were compared with the three-dimensional analysis technique known as Spline Variational Elastic Laminate Technology (SVELT), resulting in a very close match and corroborating the usefulness of SVELT.en
dc.description.degreePh. D.en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.subjectmoire interferometryen
dc.subjectfiber reinforced compositesen
dc.subjectopen holesen
dc.subjectexperimental testingen
dc.subjectstrain measurementen
dc.subjectphase shiftingen
dc.subjectvariational methodsen
dc.titleInterlaminar Deformation at a Hole in Laminated Composites: A Detailed Experimental Investigation Using Moire Interferometryen
dc.typeDissertationen Science and Mechanicsen Polytechnic Institute and State Universityen D.en


Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
6.07 MB
Adobe Portable Document Format