Distributed, Stable Topology Control of Multi-Robot Systems with Asymmetric Interactions

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Multi-robot systems have recently witnessed a swell in interest in the past few years because of their various applications such as agricultural autonomy, medical robotics, industrial and commercial automation and, search and rescue. In this thesis, we particularly investigate the behavior of multi-robot systems with respect to stable topology control in asymmetric interaction settings. From theoretical perspective, we first classify stable topologies, and identify the conditions under which we can determine whether a topology is stable or not. Then, we design a limited fields-of-view (FOV) controller for robots that use sensors like cameras for coordination which induce asymmetric robot to robot interactions. Finally, we conduct a rigorous theoretical analysis to qualitatively determine which interactions are suitable for stable directed topology control of multi-robot systems with asymmetric interactions. In this regard, we solve an optimal topology selection problem to determine the topology with the best interactions based on a suitable metric that represents the quality of interaction. Further, we solve this optimal problem distributively and validate the distributed optimization formulation with extensive simulations.  For experimental purposes, we developed a portable multi-robot testbed which enables us to conduct multi-robot topology control experiments in both indoor and outdoor settings and validate our theoretical findings. Therefore, the contribution of this thesis is two fold: i) We provide rigorous theoretical analysis of  stable coordination of multi-robot systems with directed graphs, demonstrating the graph structures that induce stability for a broad class of coordination objectives; ii) We develop a testbed that enables validating multi-robot topology control in both indoor and outdoor settings.



Multi-Robot Systems, Stable Topology Control, Convex Optimization, Semidefinite Programming