Application of the Finite Element Method to the Seismic Design and Analysis of Large Moment End-Plate Connections

TR Number

Date

2004-08-12

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Due to problems associated with welded moment connections uncovered after the Northridge earthquake, large bolted connections are becoming a much more attractive alternative for design in seismic regions. However, stringent design requirements established by the AISC Seismic Provisions for Structural Steel Buildings (1997) make current moment end-plate configurations and design procedures inadequate for multi-story buildings. This dissertation first examines and critiques current seismic design philosophies as applied to moment end-plate connections. Next, the finite element method is used to develop much-needed design procedures for large moment end-plate connections, and to improve the understanding of the role of geometric parameters (e.g., bolt pitch and stiffener locations) in the response of these connections. Finally, single-story and multi-story frames incorporating large moment end-plate connections with known moment-rotation characteristics are considered under seismic loading to determine the effectiveness of these systems in dissipating energy caused by the ground motion.

Description

Keywords

Finite element method, Dynamic, Earthquake, Steel, Cyclic, Connection

Citation