Poisson-lie structures on infinite-dimensional jet groups and their quantization
dc.contributor.author | Stoyanov, Ognyan S. | en |
dc.contributor.committeecochair | Kupershmidt, Boris | en |
dc.contributor.committeecochair | Slawny, Joseph | en |
dc.contributor.committeemember | Zweifel, Paul F. | en |
dc.contributor.committeemember | Greenberg, William | en |
dc.contributor.committeemember | Haskell, Peter | en |
dc.contributor.committeemember | Klaus, Martin | en |
dc.contributor.committeemember | Bowden, Robert L. | en |
dc.contributor.department | Mathematical Physics | en |
dc.date.accessioned | 2014-03-14T21:14:19Z | en |
dc.date.adate | 2008-06-06 | en |
dc.date.available | 2014-03-14T21:14:19Z | en |
dc.date.issued | 1993 | en |
dc.date.rdate | 2008-06-06 | en |
dc.date.sdate | 2008-06-06 | en |
dc.description.abstract | We study the problem of classifying all Poisson-Lie structures on the group Gy of local diffeomorphisms of the real line R¹ which leave the origin fixed, as well as the extended group of diffeomorphisms G₀<sub>∞</sub> ⊃ G<sub>∞</sub> whose action on R¹ does not necessarily fix the origin. A complete classification of all Poisson-Lie structures on the group G<sub>∞</sub> is given. All Poisson-Lie structures of coboundary type on the group G₀<sub>∞</sub> are classified. This includes a classification of all Lie-bialgebra structures on the Lie algebra G<sub>∞</sub> of G<sub>∞</sub>, which we prove to be all of coboundary type, and a classification of all Lie-bialgebra structures of coboundary type on the Lie algebra Go<sub>∞</sub> of Go<sub>∞</sub> which is the Witt algebra. A large class of Poisson structures on the space V<sub>λ</sub> of λ-densities on the real line is found such that V<sub>λ</sub> becomes a homogeneous Poisson space under the action of the Poisson-Lie group G<sub>∞</sub>. We construct a series of finite-dimensional quantum groups whose quasiclassical limits are finite-dimensional Poisson-Lie factor groups of G<sub>∞</sub> and G₀<sub>∞</sub>. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | v, 135 leaves | en |
dc.format.medium | BTD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.other | etd-06062008-170612 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-06062008-170612/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/38421 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | LD5655.V856_1993.S869.pdf | en |
dc.relation.isformatof | OCLC# 29323376 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1993.S869 | en |
dc.subject.lcsh | Poisson integral formula | en |
dc.subject.lcsh | Quantum groups | en |
dc.title | Poisson-lie structures on infinite-dimensional jet groups and their quantization | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematical Physics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1993.S869.pdf
- Size:
- 5.28 MB
- Format:
- Adobe Portable Document Format
- Description: