Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization

dc.contributorVirginia Bioinformatics Instituteen
dc.contributorVirginia Tech. Mathematics Departmenten
dc.contributorinuTech GmbHen
dc.contributor.authorDougherty, Edward T.en
dc.contributor.authorTurner, James C.en
dc.contributor.authorVogel, Franken
dc.contributor.departmentMathematicsen
dc.contributor.departmentFralin Life Sciences Instituteen
dc.contributor.editorMigliore, Micheleen
dc.date.accessed2016-02-12en
dc.date.accessioned2016-02-16T08:03:28Zen
dc.date.available2016-02-16T08:03:28Zen
dc.date.issued2014-10-23en
dc.description.abstractTranscranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.en
dc.description.sponsorshipVirginia Tech. Open Access Subvention Funden
dc.description.versionPublished versionen
dc.format.extent14 p.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationEdward T. Dougherty, James C. Turner, and Frank Vogel, “Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization,” Computational and Mathematical Methods in Medicine, vol. 2014, Article ID 360179, 14 pages, 2014. doi:10.1155/2014/360179en
dc.identifier.doihttps://doi.org/10.1155/2014/360179en
dc.identifier.issn1748-670Xen
dc.identifier.other360179en
dc.identifier.urihttp://hdl.handle.net/10919/64817en
dc.identifier.urlhttp://www.hindawi.com/journals/cmmm/2014/360179/en
dc.identifier.volume2014en
dc.language.isoenen
dc.publisherHindawi Publishing Corporationen
dc.rightsCreative Commons Attribution 3.0 Unporteden
dc.rights.holderCopyright © 2014 Edward T. Dougherty et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.rights.holderDougherty, Edward T.en
dc.rights.holderTurner, James C.en
dc.rights.holderVogel, Franen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.titleMultiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarizationen
dc.title.serialComputational and Mathematical Methods in Medicineen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multiscale_Coupling_Transcranial.pdf
Size:
7.37 MB
Format:
Adobe Portable Document Format
Description: