Understanding How Tape Casting Titanium Diboride Shifts its Processing-Microstructure-Properties Paradigm Toward New Applications

TR Number

Date

2023-09-07

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The manufacturing of UHTC materials has significantly advanced over recent years, allowing for the development of new microstructures, architectures, shapes, and geometries to explore new properties and applications for these materials beyond aerospace. One of the UHTCs, titanium diboride (TiB2) exhibits high electrical and thermal conductivity that could satisfy the needs of functional ceramic component applications, like battery cathodes, by tailoring its microstructure and architecture. This thesis represents one of the first detailed studies to understand how the processing-microstructure-properties relationship of TiB2 can be shifted to explore new applications. In order to do that, TiB2 has been manufactured with a processing technique never used before, with significant porosity, exploration of which has been very limited for this material. Additionally, this thesis also explores the synthesis and utilization of novel anisotropic particles to further explore this material relationship. In this work, aqueous tape casting of TiB2 has been investigated. Zeta potential measurements and suspension rheology were used to understand the role of dispersant, binder and plasticizer in the suspension and their interaction with the surface chemistry of the TiB2 particles to develop a stable, homogenous suspension, with minimum additive amounts (0-2 wt%). Homogeneous, flexible and strong TiB2 tapes were prepared using suspensions with 30 vol% solids and characterized to compare different compositions, mixing methods, and thicknesses. The characterization shows the tailoring of the properties as a function of the controlled suspension formulation with minimum amount of additives. Green tapes with 2 wt% dispersant, 1 wt% binder, and 2 wt% plasticizer had similar microstructure to those with half the plasticizer but quintuple the Young's modulus (1.96 GPa). The effect on other relevant properties is also discussed. Tape casting aligns anisotropic particles along the direction of casting, which can be taken advantage of for increasing fracture toughness directionally or producing aligned pore networks using sacrificial fillers. The relationship between alignment, porosity, and the mechanical properties of titanium diboride has not been studied. In this work, we characterize the porous sintered bodies produced through aqueous tape casting of non-spherical TiB2 particles of aspect ratio close to 1, as well as composites with an added high aspect ratio particle (2 wt% PCN-222). Synthesis of uniform, spherical ZrC is difficult and generally not cost-effective, as is the case for most ultra-high temperature ceramics. High aspect ratio particles for reinforcement of ceramic composites are even more difficult to synthesize. Metal organic frameworks (MOF) are crystalline coordination polymers composed of multidentate organic linkers bridging metal nodes to form porous structures. Thermal decomposition of MOFs presents a new and cost-effective route to synthesis of ZrC. In this study, heat treatment at 2000°C of MOF PCN-222 produces zirconium carbide (ZrC) within a highly anisotropic particle. The resulting rod-shaped, glass-like carbon matrix embedded with ZrC crystals is described. These rods have potential as reinforcements for iii high temperature applications and as a synthetic route for ultra-high temperature ceramics with unique morphologies. It is the first time that this type of transformation from a MOF into a UHTC has been reported. We have determined through analysis of SEM images that regardless of tape casting speed, about 57% of the TiB2 particles are aligned with the tape casting direction. The mechanical properties are dominated by the effects of the porosity (38%), but the alignment exhibited here could be further exploited for anisotropic behavior across the sintered tapes. Composites cast with high aspect ratio particles exhibited strong alignment in the casting direction. Further work is required to understand the interplay between alignment and porosity and their effects on material properties.

Description

Keywords

colloidal processing, tape casting, ultra-high temperature ceramics, microstructure, porosity, alignment

Citation