A Data-Driven Koopman Approach for Power System Nonlinear Dynamic Observability Analysis
dc.contributor.author | Xu, Yijun | en |
dc.contributor.author | Wang, Qinling | en |
dc.contributor.author | Mili, Lamine M. | en |
dc.contributor.author | Zheng, Zongsheng | en |
dc.contributor.author | Gu, Wei | en |
dc.contributor.author | Lu, Shuai | en |
dc.contributor.author | Wu, Zhi | en |
dc.date.accessioned | 2024-01-23T18:33:07Z | en |
dc.date.available | 2024-01-23T18:33:07Z | en |
dc.date.issued | 2023-08-15 | en |
dc.description.abstract | A prerequisite to dynamic state estimation of a stochastic nonlinear dynamic model of a power system is its observability analysis. However, due to the model nonlinearity, the traditional methods either suffer from a poor estimation accuracy if a linear approximation is performed or yield an extremely complicated procedure if the Lie-derivative method is applied to a large-scale power system. To address these weaknesses, we propose a new data-driven Koopman-based observability method by revealing the link that exists between the Koopman operator and the Lie-derivative in the Koopman canonical coordinates. This enables the proposed data-driven method not only to be fully <italic>derivative-free</italic>, which alleviates its implementation complexity but also overcomes the model nonlinearity and inaccuracy of the system. Furthermore, as an important byproduct, the proposed observability analysis scheme provides a valuable guide for the selection of the <italic>observables</italic> of the Koopman operator, which is a major difficulty for the application of this operator. Finally, we demonstrate the excellent performance of the proposed method on several IEEE standard test systems. | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 1-15 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/TPWRS.2023.3305404 | en |
dc.identifier.eissn | 1558-0679 | en |
dc.identifier.issn | 0885-8950 | en |
dc.identifier.issue | 99 | en |
dc.identifier.orcid | Mili, Lamine [0000-0001-6134-3945] | en |
dc.identifier.uri | https://hdl.handle.net/10919/117625 | en |
dc.identifier.volume | PP | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | A Data-Driven Koopman Approach for Power System Nonlinear Dynamic Observability Analysis | en |
dc.title.serial | IEEE Transactions on Power Systems | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Journal Article | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Yijun-Mili_A_Data-Driven_Koopman_Approach_for_Power_System_Nonlinear_Dynamic_Observability_Analysis.pdf
- Size:
- 2.72 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version
License bundle
1 - 1 of 1