Higher Order Immersed Finite Element Methods for Interface Problems

TR Number

Date

2024-05-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In this dissertation, we provide a unified framework for analyzing immersed finite element methods in one spatial dimension, and we design a new geometry conforming IFE space in two dimensions with optimal approximation capabilities, alongside with applications to the elliptic interface problem and the hyperbolic interface problem.

In the first part, we discuss a general m-th degree IFE space for one dimensional interface problems with many polynomial-like properties, then we develop a general framework for obtaining error estimates for the IFE spaces developed for solving a variety of interface problems, including but not limited to, the elliptic interface problem, the Euler-Bernoulli beam interface problem, the parabolic interface problem, the transport interface problem, and the acoustic interface problem.

In the second part, we develop a new m-th degree finite element space based on the differential geometry of the interface to solve interface problems in two spatial dimensions. The proposed IFE space has optimal approximation capabilities, easy to construct, and the IFE functions satisfy the interface conditions exactly. We provide several numerical examples to demonstrate that the IFE space yields optimally converging solutions when applied to the elliptic interface problem and the hyperbolic interface problem with a symmetric interior penalty discontinuous Galerkin formulation.

Description

Keywords

Immersed finite element, interface problems, error analysis, unfitted methods

Citation