Representation theory, Borel cross-sections, and minimal measures
dc.contributor.author | Miller, Janice E. | en |
dc.contributor.committeechair | Olin, Robert F. | en |
dc.contributor.committeemember | Ball, Joseph A. | en |
dc.contributor.committeemember | McCoy, Robert A. | en |
dc.contributor.committeemember | Aull, Charles E. | en |
dc.contributor.committeemember | Johnson, Lee W. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T21:15:08Z | en |
dc.date.adate | 2006-06-19 | en |
dc.date.available | 2014-03-14T21:15:08Z | en |
dc.date.issued | 1993 | en |
dc.date.rdate | 2006-06-19 | en |
dc.date.sdate | 2006-06-19 | en |
dc.description.abstract | Let E be an analytic metric space, let X be a separable metric space with a regular Borel probability measure μ and let Π: E → X be a continuous map with μ(X \ Π(E)) =0. Schwartz’s lemma states that there exists a Borel cross-section for Π defined almost everywhere (μ). The equivalence classes of these Borel cross-sections are in one-to-one correspondence with the representations of the form Γ:C<sub>b</sub>(E) → L<sup>∞</sup>(μ) with Γ(f∘Π) = f for every f ∈ C<sub>b</sub>(X). The representations are also in one-to-one correspondence with equivalence classes of the minimal measures on E. Now let E, X, and μ be as above and let Π: E → X be an onto Borel map. There exists a Borel cross-section for Π defined almost everywhere (μ). The equivalence classes of the Borel cross-sections for Π are in one-to-one correspondence with the representations of the form Γ:B(E) → L<sup>∞</sup>(μ) with Γ(f∘Π) = f for every f in C<sub>b</sub>(X), where B(E) is the C*-algebra of the bounded Borel functions on E. The representations are also in one-to-one correspondence with equivalence classes of the minimal measures on E. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | iv, 51 leaves | en |
dc.format.medium | BTD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.other | etd-06192006-125737 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-06192006-125737/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/38643 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | LD5655.V856_1993.M556.pdf | en |
dc.relation.isformatof | OCLC# 29021824 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1993.M556 | en |
dc.subject.lcsh | Representations of algebras | en |
dc.title | Representation theory, Borel cross-sections, and minimal measures | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1993.M556.pdf
- Size:
- 1.95 MB
- Format:
- Adobe Portable Document Format
- Description: