The Ashley and Patterson (1986) test for serial independence in daily stock returns, revisited

dc.contributor.authorAshley, Richard A.en
dc.contributor.authorNajafi, Faezehen
dc.date.accessioned2025-01-09T14:59:14Zen
dc.date.available2025-01-09T14:59:14Zen
dc.date.issued2024-11-22en
dc.description.abstractWe update and extend the non-parametric test proposed in Ashley and Patterson (J Financ Quant Anal 21:221–227, 2014) – of the proposition that the (pre-whitened) daily stock returns for a firm are serially independent, and hence unpredictable from their own past. That paper applied this test to daily returns from 1962 to 1981 for several U.S. corporations and aggregate indices, finding mixed evidence against this null hypothesis of serial independence. The returns dataset is updated here to include thirteen firms which are currently more relevant, and the sample is extended through the end of 2023. We also update the simulation methodology here to properly account for the conditional heteroskedasticity in the daily returns data, so that the present results should now be more statistically reliable. The results are broadly in line with our earlier results, but they do suggest further avenues of research in this area.en
dc.description.versionPublished versionen
dc.format.extent18 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1007/s10479-024-06355-0en
dc.identifier.eissn1572-9338en
dc.identifier.issn0254-5330en
dc.identifier.orcidAshley, Richard [0000-0002-2043-3028]en
dc.identifier.urihttps://hdl.handle.net/10919/124006en
dc.language.isoenen
dc.publisherSpringeren
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectStock returnsen
dc.subjectRandom walksen
dc.subjectSerial independenceen
dc.subjectBootstrapen
dc.subjectNonparametric testingen
dc.titleThe Ashley and Patterson (1986) test for serial independence in daily stock returns, revisiteden
dc.title.serialAnnals of Operations Researchen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherEarly Accessen
dc.type.otherJournalen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Economicsen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ashley_Najafi_ANOR_2025_journal_version_doi.org_10.1007_s10479-024-06355-0.pdf
Size:
660.5 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: