Molecular mechanisms creating bistable switches at cell cycle transitions

dc.contributor.authorVerdugo, Anaelen
dc.contributor.authorVinod, P. K.en
dc.contributor.authorTyson, John J.en
dc.contributor.authorNovak, Belaen
dc.contributor.departmentBiological Sciencesen
dc.date.accessioned2016-12-09T21:40:52Zen
dc.date.available2016-12-09T21:40:52Zen
dc.date.issued2013-03-01en
dc.description.abstractProgression through the eukaryotic cell cycle is characterized by specific transitions, where cells move irreversibly from stage i 21 of the cycle into stage i. These irreversible cell cycle transitions are regulated by underlying bistable switches, which share some common features. An inhibitory protein stalls progression, and an activatory protein promotes progression. The inhibitor and activator are locked in a double-negative feedback loop, creating a one-way toggle switch that guarantees an irreversible commitment to move forward through the cell cycle, and it opposes regression from stage i to stage i 2 1. In many cases, the activator is an enzyme that modifies the inhibitor in multiple steps, whereas the hypo-modified inhibitor binds strongly to the activator and resists its enzymatic activity. These interactions are the basis of a reaction motif that provides a simple and generic account of many characteristic properties of cell cycle transitions. To demonstrate this assertion, we apply the motif in detail to the G1/S transition in budding yeast and to the mitotic checkpoint in mammalian cells. Variations of the motif might support irreversible cellular decision-making in other contexts.en
dc.description.versionPublished versionen
dc.format.extent14 pagesen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1098/rsob.120179en
dc.identifier.issn2046-2441en
dc.identifier.urihttp://hdl.handle.net/10919/73642en
dc.identifier.volume3en
dc.language.isoenen
dc.publisherRoyal Societyen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000318268500002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsCreative Commons Attribution 3.0 Unporteden
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectBiochemistry & Molecular Biologyen
dc.subjectcell cycleen
dc.subjectcheckpointsen
dc.subjectbistabilityen
dc.subjectnetwork motifsen
dc.subjectSPINDLE-ASSEMBLY CHECKPOINTen
dc.subjectSYSTEMS-LEVEL FEEDBACKen
dc.subjectMULTISITE PHOSPHORYLATIONen
dc.subjectSACCHAROMYCES-CEREVISIAEen
dc.subjectRESTRICTION POINTen
dc.subjectANAPHASE SWITCHen
dc.subjectMITOTIC ARRESTen
dc.subjectCDK INHIBITORen
dc.subjectS PHASEen
dc.subjectDESTRUCTIONen
dc.titleMolecular mechanisms creating bistable switches at cell cycle transitionsen
dc.title.serialOpen Biologyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Biological Sciencesen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/University Distinguished Professorsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Molecular mechanisms creating bistable switches at cell cycle transitions.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
Publisher's Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: