Multifunctional Multimaterial Fibers for Sensing and Modulation in Wearable and Biomedical Applications
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The aim of this dissertation is to summarize my research on the development of multifunctional multimaterial fibers that are designed and produced for sensing and modulation applications in wearable and biomedical fields. Fiber-shaped devices have gained significant attention due to their potential in human-machine interface applications. These devices can be woven into fabrics to create smart textiles or used as implantable probes for various biomedical purposes. To meet the requirements of human-machine interface, these fiber devices need to be flexible, robust, scalable, and capable of integrating complex structures and multiple functionalities. The thermal drawing technique has emerged as a promising method for fabricating such fiber devices. It allows for the integration of multiple materials and intricate microstructures, thereby expanding the functionality and applications of the devices. However, the range of materials and structures that can be integrated into these fiber devices is still limited, posing a constraint on their potential applications. To address this limitation, the dissertation focuses on expanding the range of materials and structures that can be integrated into multimaterial fiber devices. This involves the development and application of stretchable electrical and optical deformation fiber sensors by incorporating composite thermoplastic elastomers through the thermal drawing process (Chapter 2). Additionally, the dissertation explores the use of the thermal drawing technique to create multifunctional ferromagnetic fiber robots capable of navigation, sensing, and modulation in minimally invasive surgery (Chapter 3). Furthermore, the integration of nano-optoelectrodes and micro robotic chips on the fiber tip using the combination of thermal drawing and lab-on-fiber techniques is investigated (Chapter 4). The dissertation concludes with an overview of the research findings and potential future directions in the field of multifunctional multimaterial fiber devices (Chapter 5).