Machine Learning Applications in Structural Analysis and Design

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Artificial intelligence (AI) has progressed significantly during the last several decades, along with the rapid advancements in computational power. This advanced technology is currently being employed in various engineering fields, not just in computer science. In aerospace engineering, AI and machine learning (ML), a major branch of AI, are now playing an important role in various applications, such as automated systems, unmanned aerial vehicles, aerospace optimum design structure, etc. This dissertation mainly focuses on structural engineering to employ AI to develop lighter and safer aircraft structures as well as challenges involving structural optimization and analysis. Therefore, various ML applications are studied in this research to provide novel frameworks for structural optimization, analysis, and design. First, the application of a deep-learning-based (DL) convolutional neural network (CNN) was studied to develop a surrogate model for providing optimum structural topology. Typically, conventional structural topology optimization requires a large number of computations due to the iterative finite element analyses (FEAs) needed to obtain optimal structural layouts under given load and boundary conditions. A proposed surrogate model in this study predicts the material density layout inputting the static analysis results using the initial geometry but without performing iterative FEAs. The developed surrogate models were validated with various example cases. Using the proposed method, the total calculation time was reduced by 98 % as compared to conventional topology optimization once the CNN had been trained. The predicted results have equal structural performance levels compared to the optimum structures derived by conventional topology optimization considered ``ground truths". Secondly, reinforcement learning (RL) is studied to create a stand-alone AI system that can design the structure from trial-and-error experiences. RL application is one of the major ML branches that mimic human behavior, specifically how human beings solve problems based on their experience. The main RL algorithm assumes that the human problem-solving process can be improved by earning positive and negative rewards from good and bad experiences, respectively. Therefore, this algorithm can be applied to solve structural design problems whereby engineers can improve the structural design by finding the weaknesses and enhancing them using a trial and error approach. To prove this concept, an AI system with the RL algorithm was implemented to drive the optimum truss structure using continuous and discrete cross-section choices under a set of given constraints. This study also proposed a unique reward function system to examine the constraints in structural design problems. As a result, the independent AI system can be developed from the experience-based training process, and this system can design the structure by itself without significant human intervention. Finally, this dissertation proposes an ML-based classification tool to categorize the vibrational mode shapes of tires. In general, tire vibration significantly affects driving quality, such as stability, ride comfort, noise performance, etc. Therefore, a comprehensive study for identifying the vibrational features is necessary to design the high-performance tire by considering the geometry, material, and operation conditions. Typically, the vibrational characteristics can be obtained from the modal test or numerical analysis. These identified modal characteristics can be used to categorize the tire mode shapes to determine the specific mode cause poorer driving performances. This study suggests a method to develop an ML-based classification tool that can efficiently categorize the mode shape using advanced feature recognition and classification algorithms. The best-performed classification tool can accurately predict the tire category without manual effort. Therefore, the proposed classification tool can be used to categorize the tire mode shapes for subsequent tire performance and improve the design process by reducing the time and resources for expensive calculations or experiments.



Artificial Intelligence, Digital Twin, Machine Learning, Structural Optimization, Surrogate Model