VTechWorks staff will be away for the Thanksgiving holiday from Wednesday November 26 through Sunday November 30. We will respond to emails on Monday December 1.
 

Development and characterization of the mode-of-action of inhibitory and agonist peptides targeting the voltage-gated sodium channel SCN1B beta-subunit

Abstract

Cardiac arrhythmia treatment is a clinical challenge necessitating safer and more effective therapies. Recent studies have highlighted the role of the perinexus, an intercalated disc nanodomain enriched in voltage-gated sodium channels including both Nav1.5 and β1 subunits, adjacent to gap junctions. These findings offer insights into action potential conduction in the heart. A 19-amino acid SCN1B (β1/β1B) mimetic peptide, βadp1, disrupts VGSC beta subunit-mediated adhesion in cardiac perinexii, inducing arrhythmogenic changes. We aimed to explore βadp1's mechanism and develop novel SCN1B mimetic peptides affecting β1-mediated adhesion. Using patch clamp assays in neonatal rat cardiomyocytes and electric cell substrate impedance sensing (ECIS) in β1-expressing cells, we observed βadp1 maintained inhibitory effects for up to 5 h. A shorter peptide (LQLEED) based on the carboxyl-terminus of βadp1 mimicked this inhibitory effect, while dimeric peptides containing repeated LQLEED sequences paradoxically promoted intercellular adhesion over longer time courses. Moreover, we found a link between these peptides and β1-regulated intramembrane proteolysis (RIP) - a signaling pathway effecting gene transcription including that of VGSC subunits. βadp1 increased RIP continuously over 48 h, while dimeric agonists acutely boosted RIP for up to 6 h. In the presence of DAPT, an RIP inhibitor, βadp1's effects on ECIS-measured intercellular adhesion was reduced, suggesting a relationship between RIP and the peptide's inhibitory action. In conclusion, novel SCN1B (β1/β1B) mimetic peptides are reported with the potential to modulate intercellular VGSC β1-mediated adhesion, potentially through β1 RIP. These findings suggest a path towards the development of anti-arrhythmic drugs targeting the perinexus.

Description

Keywords

Arrhythmia, Peptide therapeutic, Voltage-gated sodium channels, SCN1B (beta 1/beta 1B)

Citation