Approximate Bayesian Techniques for Statistical Model Selection and Quantifying Model Uncertainty-Application to a Gait Study

dc.contributor.authorFranck, Christopher T.en
dc.contributor.authorArena, Sara L.en
dc.contributor.authorMadigan, Michael L.en
dc.date.accessioned2025-04-14T14:17:04Zen
dc.date.available2025-04-14T14:17:04Zen
dc.date.issued2022-08-20en
dc.description.abstractFrequently, biomedical researchers need to choose between multiple candidate statistical models. Several techniques exist to facilitate statistical model selection including adjusted R2, hypothesis testing and p-values, and information criteria among others. One particularly useful approach that has been slow to permeate the biomedical literature is the notion of posterior model probabilities. A major advantage of posterior model probabilities is that they quantify uncertainty in model selection by providing a direct, probabilistic comparison among competing models as to which is the “true” model that generated the observed data. Additionally, posterior model probabilities can be used to compute posterior inclusion probabilities which quantify the probability that individual predictors in a model are associated with the outcome in the context of all models considered given the observed data. Posterior model probabilities are typically derived from Bayesian statistical approaches which require specialized training to implement, but in this paper we describe an easy-to-compute version of posterior model probabilities and inclusion probabilities that rely on the readily-available Bayesian information criterion. We illustrate the utility of posterior model probabilities and inclusion probabilities by re-analyzing data from a published gait study investigating factors that predict required coefficient of friction between the shoe sole and floor while walking.en
dc.description.versionAccepted versionen
dc.format.extentPages 422-429en
dc.format.extent8 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1007/s10439-022-03046-4en
dc.identifier.eissn1573-9686en
dc.identifier.issn0090-6964en
dc.identifier.issue2en
dc.identifier.orcidMadigan, Michael [0000-0002-4299-3851]en
dc.identifier.orcidFranck, Christopher [0000-0003-1251-4378]en
dc.identifier.orcidArena, Sara [0000-0002-3545-5000]en
dc.identifier.other10.1007/s10439-022-03046-4 (PII)en
dc.identifier.pmid35987947en
dc.identifier.urihttps://hdl.handle.net/10919/125171en
dc.identifier.volume51en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/35987947en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectStatistical model selectionen
dc.subjectMulticollinearityen
dc.subjectBayesian information criterionen
dc.subject.meshGaiten
dc.subject.meshModels, Statisticalen
dc.subject.meshProbabilityen
dc.subject.meshBayes Theoremen
dc.subject.meshUncertaintyen
dc.titleApproximate Bayesian Techniques for Statistical Model Selection and Quantifying Model Uncertainty-Application to a Gait Studyen
dc.title.serialAnnals of Biomedical Engineeringen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2022-08-02en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Statisticsen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Industrial and Systems Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Biomedical Engineering and Mechanicsen
pubs.organisational-groupVirginia Tech/Faculty of Health Sciencesen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ABME-D-21-00568_R2.pdf
Size:
3.12 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: