Multi-scale computational modeling of lightweight aluminum-lithium alloys
dc.contributor.author | Acar, Pinar | en |
dc.contributor.department | Mechanical Engineering | en |
dc.date.accessioned | 2019-04-01T17:18:03Z | en |
dc.date.available | 2019-04-01T17:18:03Z | en |
dc.date.issued | 2019-03-07 | en |
dc.description.abstract | The present study addresses the multi-scale computational modeling of a lightweight Aluminum-Lithium (Al-Li) 2070 alloy. The Al-Li alloys display significant anisotropy in material properties because of their strong crystallographic texture. To understand the relationships between processing, microstructural textures at different material points and tailored material properties, a multi-scale simulation is performed by controlling the texture evolution during deformation. To achieve the multi-scale framework, a crystal plasticity model based on a one-point probability descriptor, Orientation Distribution Function (ODF), is implemented to study the texture evolution. Next, a two-way coupled multi-scale model is developed, where the deformation gradient at the macro-scale integration points is passed to the micro-scale ODF model and the homogenized stress tensor at the micro-scale is passed back to the macro-scale model. A gradient-based optimization scheme which incorporates the multi-scale continuum sensitivity method is utilized to calibrate the slip system parameters of the alloy using the available experimental data. Next, the multi-scale simulations are performed for compression and tension using the calibrated crystal plasticity model, and the texture data is compared to the experiments. With the presented multi-scale modeling scheme, we achieve the location-specific texture predictions for a new generation Al-Li alloy for different deformation processes. © 2019 The Author | en |
dc.description.notes | This work was supported by Virginia Polytechnic Institute and State University . | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1016/j.heliyon.2019.e01225 | en |
dc.identifier.issn | 24058440 | en |
dc.identifier.issue | 3 | en |
dc.identifier.other | e01225 | en |
dc.identifier.uri | http://hdl.handle.net/10919/88793 | en |
dc.identifier.volume | 5 | en |
dc.language.iso | en_US | en |
dc.publisher | Elsevier Ltd | en |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Materials science | en |
dc.title | Multi-scale computational modeling of lightweight aluminum-lithium alloys | en |
dc.title.serial | Heliyon | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S2405844018375789-main.pdf
- Size:
- 1.45 MB
- Format:
- Adobe Portable Document Format
- Description: