Fluidic Energy Harvesting and Sensing Systems

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Smart sensors have become and will continue to constitute an enabling technology to wirelessly connect platforms and systems and enable improved and autonomous performance. Automobiles have about two hundred sensors. Airplanes have about eight thousand sensors. With technology advancements in autonomous vehicles or fly-by-wireless, the numbers of these sensors is expected to increase significantly. The need to conserve water and energy has led to the development of advanced metering infrastructure (AMI) as a concept to support smart energy and water grid systems that would respond to emergency shut-offs or electric blackouts. Through the Internet of things (IoT) smart sensors and other network devices will be connected to enable exchange and control procedure toward reducing the operational cost and improving the efficiency of residential and commercial buildings in terms of their function or energy and water use.

Powering these smart sensors with batteries or wires poses great challenges in terms of replacing the batteries and connecting the wires especially in remote and difficult-to-reach locations. Harvesting free ambient energy provides a solution to develop self-powered smart sensors that can support different platforms and systems and integrate their functionality. In this dissertation, we develop and experimentally assess the performance of harvesters that draw their energy from air or water flows. These harvesters include centimeter-scale micro wind turbines, piezo aeroelastic harvesters, and micro hydro generators. The performance of these different harvesters is determined by their capability to support wireless sensing and transmission, the level of generated power, and power density. We also develop and demonstrate the capability of multifunctional systems that can harvest energy to replenish a battery and use the harvested energy to sense speed, flow rate or temperature, and to transmit the data wirelessly to a remote location.



Energy harvesting, Self-powered Sensors, Smart Sensors, Remote Data Acquisition, Micro Turbine, Micro Hydro Generators, Piezoelectric Transducers, Advanced Metering