VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Human-centered intelligent training for emergency responders

dc.contributor.authorMehta, Ranjana K.en
dc.contributor.authorMoats, Jasonen
dc.contributor.authorKarthikeyan, Rohithen
dc.contributor.authorGabbard, Joseph L.en
dc.contributor.authorSrinivasan, Divyaen
dc.contributor.authorDu, Eric Jingen
dc.contributor.authorLeonessa, Alexanderen
dc.contributor.authorBurks, Garreten
dc.contributor.authorStephenson, Andrewen
dc.contributor.authorFernandes, Ronen
dc.date.accessioned2022-07-19T16:55:13Zen
dc.date.available2022-07-19T16:55:13Zen
dc.date.issued2022-03en
dc.description.abstractEmergency response (ER) workers perform extremely demanding physical and cognitive tasks that can result in serious injuries and loss of life. Human augmentation technologies have the potential to enhance physical and cognitive work-capacities, thereby dramatically transforming the landscape of ER work, reducing injury risk, improving ER, as well as helping attract and retain skilled ER workers. This opportunity has been significantly hindered by the lack of high-quality training for ER workers that effectively integrates innovative and intelligent augmentation solutions. Hence, new ER learning environments are needed that are adaptive, affordable, accessible, and continually available for reskilling the ER workforce as technological capabilities continue to improve. This article presents the research considerations in the design and integration of use-inspired exoskeletons and augmented reality technologies in ER processes and the identification of unique cognitive and motor learning needs of each of these technologies in context-independent and ER-relevant scenarios. We propose a human-centered artificial intelligence (AI) enabled training framework for these technologies in ER. Finally, how these human-centered training requirements for nascent technologies are integrated in an intelligent tutoring system that delivers across tiered access levels, covering the range of virtual, to mixed, to physical reality environments, is discussed.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1002/aaai.12041en
dc.identifier.eissn2371-9621en
dc.identifier.issn0738-4602en
dc.identifier.issue1en
dc.identifier.urihttp://hdl.handle.net/10919/111296en
dc.identifier.volume43en
dc.language.isoenen
dc.publisherAmerican Association for Artificial Intelligenceen
dc.rightsCreative Commons Attribution-NonCommercial 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en
dc.subjectneural mechanismsen
dc.subjectfeedbacken
dc.titleHuman-centered intelligent training for emergency respondersen
dc.title.serialAI Magazineen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MehtaHuman2022.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Description:
Published version