Developing Prefabricated, Light-weight CLT Exterior Wall Panels for Mid-rise Buildings

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


The building construction industry has seen the emergence of Cross Laminated Timber (CLT) as a renewable replacement for structural application of steel, concrete, and masonry. However, CLT has not been researched extensively as a nonstructural component of the building envelope/facade. In the presented research, the application of CLT is introduced in the form of lightweight CLT (CLT-L) panels and presents a framework to evaluate the opportunities and application of CLT-L panels as an alternative construction method for non-load-bearing exterior wall systems. Since exterior walls as part of the enclosure system have a significant role in energy consumption and human comfort level, the research evaluates application opportunities of the CLT panels for US climates, by conducting a life cycle environmental analysis, and a thermal evaluation of CLT-L systems for Phoenix, Arizona, and Minneapolis, Minnesota. The life cycle analysis was conducted to assess the environmental impact of a typical CLT wall system as compared to three conventional panelized wall systems. The results of the analysis have shown that CLT wall systems exhibit the lowest cumulative life cycle environmental impact indicators, including acidification potential, fossil fuel consumption, global warming potential, and human health particulate when compared to other wall systems. These results suggest that CLT wall systems could be a viable alternative to conventional panelized exterior wall systems from an environmental impact perspective. In the next step, a parametric study was conducted to determine the optimal configuration of a CLT-L wall system for enhanced thermal performance. This was achieved through dynamic thermal simulations by employing the conduction transfer algorithm and analyzing various thicknesses and locations of the thermal insulation layer. Through analysis of the annual thermal transmission load and decrement factor, the optimum insulation thicknesses for CLT wall systems in two climate regions were determined. The results showed that the exterior insulation location yields better thermal efficiency. The results of this phase were employed in the development of the CLT wall system model and conduction of a comparative parametric study on the thermal mass behavior of CLT and CMU wall systems via finite difference algorithm. One significant outcome of the simulation data analysis was the heat transfer dynamics within the CLT and CMU wall system when exterior insulation is applied. The analysis revealed that in the presence of exterior insulation, the CLT layer continues to be the primary contributor to the reduced thermal transmission of the wall. However, in the CMU mass wall configuration, the insulation layer assumes a dominant role in the reduced thermal transmission of the wall. The findings of this research present CLT as a potential environmentally efficient envelope alternative for framed buildings and provide insights into the thermal performance of CLT wall systems, which can lead to the opening of a new market for CLT panel application in the U.S.



Cross Laminated Timber, Exterior wall system, Life cycle assessment, Thermal mass, Thermal performance, Thermal transmission load, Wall configuration