Insights into the in-situ degradation and fragmentation of macroplastics in a low-order riverine system

dc.contributor.authorGray, Austin D.en
dc.contributor.authorGore, Beijaen
dc.contributor.authorGaesser, Meganen
dc.contributor.authorSequeira, Luisana Rodriguezen
dc.contributor.authorThibodeau, Tessaen
dc.contributor.authorMontgomery, Allisonen
dc.contributor.authorPurvis, Samen
dc.contributor.authorOuimet, Kathrynen
dc.contributor.authorDura, Tinaen
dc.contributor.authorMayer, Kathleenen
dc.date.accessioned2025-06-06T17:22:12Zen
dc.date.available2025-06-06T17:22:12Zen
dc.date.issued2025-05en
dc.description.abstractInland riverine systems are major conduits of microplastics to coastal environments. Plastic materials that pass through riverine systems are subjected to various degradation processes that facilitate their fragmentation into microplastics (MPs). Low-order streams, a critical yet understudied part of river networks, significantly influence the fate and transport of MPs. Here, we investigate the in situ degradation of common macroplastic polymers (e.g., low-density polyethylene, polyethylene terephthalate, and polystyrene) and their fragmentation into MPs in urban and forested streams. We deployed macroplastic items and a natural biodegradable polymer (cellulose) into a stream habitat for 52 weeks. We found that regardless of stream type (forested or urban), macroplastic polymers produced MPs in two weeks, with polystyrene having the highest fragmentation rate (8 particles/week). We explored several degradation indices (carboxyl index, hydroxyl index, and vinyl index), which revealed that photooxidation played a role in macroplastic degradation over time. Another driver of degradation was biofilm formation observed on the surface of all items, mainly composed of diatoms. Lastly, we found that field-aged macroplastics can leach plastic-derived dissolved organic. Our study narrows the knowledge gap regarding MP degradation and fragmentation in freshwater by providing real-time in situ data on the rate of polymer fragmentation in a low-order riverine system.en
dc.description.versionPublished versionen
dc.format.extent13 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1093/etojnl/vgaf116en
dc.identifier.eissn1552-8618en
dc.identifier.issn0730-7268en
dc.identifier.orcidGray, Austin [0000-0002-6090-6328]en
dc.identifier.other8124373 (PII)en
dc.identifier.pmid40316505en
dc.identifier.urihttps://hdl.handle.net/10919/135100en
dc.language.isoenen
dc.publisherOxford University Pressen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/40316505en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectplastic degradationen
dc.subjectbiofilmen
dc.subjectoxidationen
dc.subjectfragmentationen
dc.subjectfreshwateren
dc.titleInsights into the in-situ degradation and fragmentation of macroplastics in a low-order riverine systemen
dc.title.serialEnvironmental Toxicology and Chemistryen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherEarly Accessen
dc.type.otherJournalen
dcterms.dateAccepted2025-04-29en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Biological Sciencesen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETC_Gray et al2025.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: