A statistical framework for domain shape estimation in Stokes flows

dc.contributor.authorBorggaard, Jeffrey T.en
dc.contributor.authorGlatt-Holtz, Nathan E.en
dc.contributor.authorKrometis, Justinen
dc.date.accessioned2023-12-21T20:11:13Zen
dc.date.available2023-12-21T20:11:13Zen
dc.date.issued2023-08-01en
dc.description.abstractWe develop and implement a Bayesian approach for the estimation of the shape of a two dimensional annular domain enclosing a Stokes flow from sparse and noisy observations of the enclosed fluid. Our setup includes the case of direct observations of the flow field as well as the measurement of concentrations of a solute passively advected by and diffusing within the flow. Adopting a statistical approach provides estimates of uncertainty in the shape due both to the non-invertibility of the forward map and to error in the measurements. When the shape represents a design problem of attempting to match desired target outcomes, this ‘uncertainty’ can be interpreted as identifying remaining degrees of freedom available to the designer. We demonstrate the viability of our framework on three concrete test problems. These problems illustrate the promise of our framework for applications while providing a collection of test cases for recently developed Markov chain Monte Carlo algorithms designed to resolve infinite-dimensional statistical quantities.en
dc.description.versionAccepted versionen
dc.format.extent25 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 085009 (Article number)en
dc.identifier.doihttps://doi.org/10.1088/1361-6420/acdd8een
dc.identifier.eissn1361-6420en
dc.identifier.issn0266-5611en
dc.identifier.issue8en
dc.identifier.orcidBorggaard, Jeffrey [0000-0002-4023-7841]en
dc.identifier.urihttps://hdl.handle.net/10919/117259en
dc.identifier.volume39en
dc.language.isoenen
dc.publisherIOPen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectboundary shape estimationen
dc.subjectStokes flowen
dc.subjectBayesian statistical inversionen
dc.subjectMarkov chain Monte Carlo (MCMC)en
dc.subjectpreconditioned Crank-Nicolson (pCN) algorithmen
dc.titleA statistical framework for domain shape estimation in Stokes flowsen
dc.title.serialInverse Problemsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shape_estimation_of_a_coupled_Stokes_advection_diffusion_model.pdf
Size:
5 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: