Exposures to select risk factors can be estimated from a continuous stream of inertial sensor measurements during a variety of lifting-lowering tasks

dc.contributor.authorLim, Solen
dc.date.accessioned2025-04-28T13:04:09Zen
dc.date.available2025-04-28T13:04:09Zen
dc.date.issued2024-11-01en
dc.description.abstractWearable inertial measurement units (IMUs) are used increasingly to estimate biomechanical exposures in lifting-lowering tasks. The objective of the study was to develop and evaluate predictive models for estimating relative hand loads and two other critical biomechanical exposures to gain a comprehensive understanding of work-related musculoskeletal disorders in lifting. We collected 12,480 lifting-lowering phases from 26 subjects (15 men and 11 women) performing manual lifting-lowering tasks with hand loads (0–22.7 kg) at varied workstation heights and handling modes. We implemented a Hierarchical model, that sequentially classified risk factors, including workstation height, handling mode, and relative hand load. Our algorithm detected lifting-lowering phases (>97.8%) with mean onset errors of 0.12 and 0.2 seconds for lifting and lowering phases. It estimated workstation height (>98.5%), handling mode (>87.1%), and relative hand load (mean absolute errors of 5.6–5.8%) across conditions, highlighting the benefits of data-driven models in deriving lifting-lowering occurrences, timing, and critical risk factors from continuous IMU-based kinematics.en
dc.description.versionAccepted versionen
dc.format.extentPages 1596-1611en
dc.format.extent16 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1080/00140139.2024.2343949en
dc.identifier.eissn1366-5847en
dc.identifier.issn0014-0139en
dc.identifier.issue11en
dc.identifier.orcidLim, Sol [0000-0001-5569-9312]en
dc.identifier.pmid38646871en
dc.identifier.urihttps://hdl.handle.net/10919/126235en
dc.identifier.volume67en
dc.language.isoenen
dc.publisherTaylor & Francisen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/38646871en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectInertial sensor measurementsen
dc.subjectlifting-loweringen
dc.subjectrisk factors estimationen
dc.subjectbiomechanical exposuresen
dc.subjectdata-driven algorithmsen
dc.subject.meshHanden
dc.subject.meshHumansen
dc.subject.meshMusculoskeletal Diseasesen
dc.subject.meshOccupational Diseasesen
dc.subject.meshRisk Factorsen
dc.subject.meshTask Performance and Analysisen
dc.subject.meshLiftingen
dc.subject.meshWeight-Bearingen
dc.subject.meshAdulten
dc.subject.meshFemaleen
dc.subject.meshMaleen
dc.subject.meshYoung Adulten
dc.subject.meshAccelerometryen
dc.subject.meshBiomechanical Phenomenaen
dc.subject.meshWearable Electronic Devicesen
dc.titleExposures to select risk factors can be estimated from a continuous stream of inertial sensor measurements during a variety of lifting-lowering tasksen
dc.title.serialErgonomicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Industrial and Systems Engineeringen
pubs.organisational-groupVirginia Tech/Faculty of Health Sciencesen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ssrn-4684350 (1).pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: