Exposures to select risk factors can be estimated from a continuous stream of inertial sensor measurements during a variety of lifting-lowering tasks
dc.contributor.author | Lim, Sol | en |
dc.date.accessioned | 2025-04-28T13:04:09Z | en |
dc.date.available | 2025-04-28T13:04:09Z | en |
dc.date.issued | 2024-11-01 | en |
dc.description.abstract | Wearable inertial measurement units (IMUs) are used increasingly to estimate biomechanical exposures in lifting-lowering tasks. The objective of the study was to develop and evaluate predictive models for estimating relative hand loads and two other critical biomechanical exposures to gain a comprehensive understanding of work-related musculoskeletal disorders in lifting. We collected 12,480 lifting-lowering phases from 26 subjects (15 men and 11 women) performing manual lifting-lowering tasks with hand loads (0–22.7 kg) at varied workstation heights and handling modes. We implemented a Hierarchical model, that sequentially classified risk factors, including workstation height, handling mode, and relative hand load. Our algorithm detected lifting-lowering phases (>97.8%) with mean onset errors of 0.12 and 0.2 seconds for lifting and lowering phases. It estimated workstation height (>98.5%), handling mode (>87.1%), and relative hand load (mean absolute errors of 5.6–5.8%) across conditions, highlighting the benefits of data-driven models in deriving lifting-lowering occurrences, timing, and critical risk factors from continuous IMU-based kinematics. | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 1596-1611 | en |
dc.format.extent | 16 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1080/00140139.2024.2343949 | en |
dc.identifier.eissn | 1366-5847 | en |
dc.identifier.issn | 0014-0139 | en |
dc.identifier.issue | 11 | en |
dc.identifier.orcid | Lim, Sol [0000-0001-5569-9312] | en |
dc.identifier.pmid | 38646871 | en |
dc.identifier.uri | https://hdl.handle.net/10919/126235 | en |
dc.identifier.volume | 67 | en |
dc.language.iso | en | en |
dc.publisher | Taylor & Francis | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/38646871 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Inertial sensor measurements | en |
dc.subject | lifting-lowering | en |
dc.subject | risk factors estimation | en |
dc.subject | biomechanical exposures | en |
dc.subject | data-driven algorithms | en |
dc.subject.mesh | Hand | en |
dc.subject.mesh | Humans | en |
dc.subject.mesh | Musculoskeletal Diseases | en |
dc.subject.mesh | Occupational Diseases | en |
dc.subject.mesh | Risk Factors | en |
dc.subject.mesh | Task Performance and Analysis | en |
dc.subject.mesh | Lifting | en |
dc.subject.mesh | Weight-Bearing | en |
dc.subject.mesh | Adult | en |
dc.subject.mesh | Female | en |
dc.subject.mesh | Male | en |
dc.subject.mesh | Young Adult | en |
dc.subject.mesh | Accelerometry | en |
dc.subject.mesh | Biomechanical Phenomena | en |
dc.subject.mesh | Wearable Electronic Devices | en |
dc.title | Exposures to select risk factors can be estimated from a continuous stream of inertial sensor measurements during a variety of lifting-lowering tasks | en |
dc.title.serial | Ergonomics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Engineering | en |
pubs.organisational-group | Virginia Tech/Engineering/Industrial and Systems Engineering | en |
pubs.organisational-group | Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Engineering/COE T&R Faculty | en |