Augmenting a Simulation Campaign for Hybrid Computer Model and Field Data Experiments
dc.contributor.author | Koermer, Scott | en |
dc.contributor.author | Loda, Justin | en |
dc.contributor.author | Noble, Aaron | en |
dc.contributor.author | Gramacy, Robert B. | en |
dc.date.accessioned | 2025-02-18T13:08:18Z | en |
dc.date.available | 2025-02-18T13:08:18Z | en |
dc.date.issued | 2024-05-24 | en |
dc.description.abstract | The Kennedy and O’Hagan (KOH) calibration framework uses coupled Gaussian processes (GPs) to meta-model an expensive simulator (first GP), tune its “knobs” (calibration inputs) to best match observations from a real physical/field experiment and correct for any modeling bias (second GP) when predicting under new field conditions (design inputs). There are well-established methods for placement of design inputs for data-efficient planning of a simulation campaign in isolation, that is, without field data: space-filling, or via criterion like minimum integrated mean-squared prediction error (IMSPE). Analogues within the coupled GP KOH framework are mostly absent from the literature. Here we derive a closed form IMSPE criterion for sequentially acquiring new simulator data for KOH. We illustrate how acquisitions space-fill in design space, but concentrate in calibration space. Closed form IMSPE precipitates a closed-form gradient for efficient numerical optimization. We demonstrate that our KOH-IMSPE strategy leads to a more efficient simulation campaign on benchmark problems, and conclude with a showcase on an application to equilibrium concentrations of rare earth elements for a liquid–liquid extraction reaction. | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 638-650 | en |
dc.format.extent | 13 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1080/00401706.2024.2345139 | en |
dc.identifier.eissn | 1537-2723 | en |
dc.identifier.issn | 0040-1706 | en |
dc.identifier.issue | 4 | en |
dc.identifier.orcid | Noble, Christopher [0000-0002-8860-9472] | en |
dc.identifier.orcid | Gramacy, Robert [0000-0001-9308-3615] | en |
dc.identifier.orcid | Loda, Justin [0000-0002-0072-1735] | en |
dc.identifier.uri | https://hdl.handle.net/10919/124617 | en |
dc.identifier.volume | 66 | en |
dc.language.iso | en | en |
dc.publisher | Taylor & Francis | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Gaussian processes | en |
dc.subject | Integrated mean squared error | en |
dc.subject | Inverse problem | en |
dc.subject | Sequential design | en |
dc.title | Augmenting a Simulation Campaign for Hybrid Computer Model and Field Data Experiments | en |
dc.title.serial | Technometrics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Science | en |
pubs.organisational-group | Virginia Tech/Science/Statistics | en |
pubs.organisational-group | Virginia Tech/Engineering | en |
pubs.organisational-group | Virginia Tech/Engineering/Mining and Minerals Engineering | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Science/COS T&R Faculty | en |