Efficacy of corrosion control and pipe replacement in reducing citywide lead exposure during the Flint, MI water system recovery
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Flint biosolids monitoring data demonstrate a sustained decline in total lead release to potable water from plumbing since the 2014–2015 Flint Water Crisis (FWC), due to enhanced corrosion control treatment (3 mg L−1 orthophosphate as PO4) and removing of ∼80% of lead and galvanized iron service lines through early 2020. The official 90th percentile water lead levels, which have now met the federal Lead and Copper Rule threshold of 15 μg L−1 for the last four years, are in agreement with those predicted by a previously established biosolids regression model. There is also no longer a correlation between the percentage of children under 6 years of age with blood lead ≥ 5 μg dL−1 and biosolids lead mass in the 44 months post-FWC (Nov 2015–Jun 2019), nor are there continued correlations between plumbing-related metals in the biosolids, with the exception of Cu:Zn found in brass alloys that remain installed in homes. After Flint achieves 100% replacement of lead and galvanized service line pipes, a biosolids data analysis predicts that the remaining sources of waterborne lead including leaded brass, lead solder and legacy lead in pipe scale, will still release about 16–28% of the pre-FWC lead mass to potable water. The efficacy of enhanced corrosion control and replacement of service lines that contain lead is, therefore, on the order of 72–84% effective at reducing citywide lead exposure, yet some significant water lead sources will still remain even after pipe replacement is complete.