Age influences the thermal suitability of Plasmodium falciparum transmission in the Asian malaria vector Anopheles stephensi

dc.contributor.authorMiazgowicz, K. L.en
dc.contributor.authorShocket, M. S.en
dc.contributor.authorRyan, Sadie J.en
dc.contributor.authorVillena, O. C.en
dc.contributor.authorHall, R. J.en
dc.contributor.authorOwen, J.en
dc.contributor.authorAdanlawo, T.en
dc.contributor.authorBalaji, K.en
dc.contributor.authorJohnson, Leah R.en
dc.contributor.authorMordecai, Erin A.en
dc.contributor.authorMurdock, Courtney C.en
dc.contributor.departmentStatisticsen
dc.date.accessioned2020-12-17T17:36:52Zen
dc.date.available2020-12-17T17:36:52Zen
dc.date.issued2020-07-29en
dc.description.abstractModels predicting disease transmission are vital tools for long-term planning of malaria reduction efforts, particularly for mitigating impacts of climate change. We compared temperature-dependent malaria transmission models when mosquito life-history traits were estimated from a truncated portion of the lifespan (a common practice) versus traits measured across the full lifespan. We conducted an experiment on adult femaleAnopheles stephensi, the Asian urban malaria mosquito, to generate daily per capita values for mortality, egg production and biting rate at six constant temperatures. Both temperature and age significantly affected trait values. Further, we found quantitative and qualitative differences between temperature-trait relationships estimated from truncated data versus observed lifetime values. Incorporating these temperature-trait relationships into an expression governing the thermal suitability of transmission, relativeR(0)(T), resulted in minor differences in the breadth of suitable temperatures forPlasmodium falciparumtransmission between the two models constructed from onlyAn. stephensitrait data. However, we found a substantial increase in thermal niche breadth compared with a previously published model consisting of trait data from multipleAnophelesmosquito species. Overall, this work highlights the importance of considering how mosquito trait values vary with mosquito age and mosquito species when generating temperature-based suitability predictions of transmission.en
dc.description.notesThis work was supported in-part by the NSF Graduate Research Fellowship Program and a NIH R01 award (1R01AI110793-01A1). E.A.M., S.J.R., L.R.J. and M.S.S were supported by an NSF EEID grant (DEB 1518681). E.A.M. was also supported by an NIH NIGMS MIRA (1R35GM133439-01), a Hellman faculty fellowship, a Stanford Woods Institute for the EnvironmentEnvironmental Ventures Program grant and a Terman Award.en
dc.description.sponsorshipNSF Graduate Research Fellowship ProgramNational Science Foundation (NSF); NIH R01 awardUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [1R01AI110793-01A1]; NSF EEID grant [DEB 1518681]; NIH NIGMS MIRA [1R35GM133439-01]; Hellman faculty fellowship; Stanford Woods Institute for the Environment-Environmental Ventures Program grant; Terman Awarden
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1098/rspb.2020.1093en
dc.identifier.eissn1471-2954en
dc.identifier.issn0962-8452en
dc.identifier.issue1931en
dc.identifier.other20201093en
dc.identifier.pmid32693720en
dc.identifier.urihttp://hdl.handle.net/10919/101525en
dc.identifier.volume287en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectAnophelesen
dc.subjectTemperatureen
dc.subjectmalariaen
dc.subjecttransmissionen
dc.subjectlife historyen
dc.subjectsenescenceen
dc.titleAge influences the thermal suitability of Plasmodium falciparum transmission in the Asian malaria vector Anopheles stephensien
dc.title.serialProceedings of The Royal Society B-Biological Sciencesen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rspb.2020.1093.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
Description: