Applications of Numerical Methods in Heterotic Calabi-Yau Compactification
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this thesis, we apply the methods of numerical differential geometry to several different problems in heterotic Calabi-Yau compactification. We review algorithms for computing both the Ricci-flat metric on Calabi-Yau manifolds and Hermitian Yang-Mills connections on poly-stable holomorphic vector bundles over those spaces. We apply the numerical techniques for obtaining Ricci-flat metrics to study hierarchies of curvature scales over Calabi-Yau manifolds as a function of their complex structure moduli. The work we present successfully finds known large curvature regions on these manifolds, and provides useful information about curvature variation at general points in moduli space. This research is important in determining the validity of the low energy effective theories used in the description of Calabi-Yau compactifications. The numerical techniques for obtaining Hermitian Yang-Mills connections are applied in two different fashions in this thesis. First, we demonstrate that they can be successfully used to numerically determine the stability of vector bundles with qualitatively different features to those that have appeared in the literature to date. Second, we use these methods to further develop some calculations of holomorphic Chern-Simons invariant contributions to the heterotic superpotential that have recently appeared in the literature. A complete understanding of these quantities requires explicit knowledge of the Hermitian Yang-Mills connections involved. This feature makes such investigations prohibitively hard to pursue analytically, and a natural target for numerical techniques.