Randomized approaches to accelerate MCMC algorithms for Bayesian inverse problems

dc.contributor.authorSaibaba, Arvind K.en
dc.contributor.authorPrasad, Pranjalen
dc.contributor.authorde Sturler, Ericen
dc.contributor.authorMiller, Ericen
dc.contributor.authorKilmer, Misha E.en
dc.date.accessioned2024-01-22T20:22:19Zen
dc.date.available2024-01-22T20:22:19Zen
dc.date.issued2021-09-01en
dc.description.abstractMarkov chain Monte Carlo (MCMC) approaches are traditionally used for uncertainty quantification in inverse problems where the physics of the underlying sensor modality is described by a partial differential equation (PDE). However, the use of MCMC algorithms is prohibitively expensive in applications where each log-likelihood evaluation may require hundreds to thousands of PDE solves corresponding to multiple sensors; i.e., spatially distributed sources and receivers perhaps operating at different frequencies or wavelengths depending on the precise application. We show how to mitigate the computational cost of each log-likelihood evaluation by using several randomized techniques and embed these randomized approximations within MCMC algorithms. The resulting MCMC algorithms are computationally efficient methods for quantifying the uncertainty associated with the reconstructed parameters. We demonstrate the accuracy and computational benefits of our proposed algorithms on a model application from diffuse optical tomography where we invert for the spatial distribution of optical absorption.en
dc.description.versionAccepted versionen
dc.format.extent20 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 110391 (Article number)en
dc.identifier.doihttps://doi.org/10.1016/j.jcp.2021.110391en
dc.identifier.eissn1090-2716en
dc.identifier.issn0021-9991en
dc.identifier.orcidDe Sturler, Eric [0000-0002-9412-9360]en
dc.identifier.urihttps://hdl.handle.net/10919/117582en
dc.identifier.volume440en
dc.language.isoenen
dc.publisherAcademic Press – Elsevieren
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectInverse problemsen
dc.subjectRandomized algorithmsen
dc.subjectBayesian methodsen
dc.subjectMarkov chain Monte Carloen
dc.titleRandomized approaches to accelerate MCMC algorithms for Bayesian inverse problemsen
dc.title.serialJournal of Computational Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
randmcmc_accepted.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: