Impedance-based Nondestructive Evaluation for Additive Manufacturing
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Impedance-based Non-Destructive Evaluation for Additive Manufacturing (INDEAM) is rooted in the field of Structural Health Monitoring (SHM). INDEAM generalizes the structure-to-itself comparisons characteristic of the SHM process through introduction of inter-part comparisons: instead of comparing a structure to itself over time, potentially-damaged structures are compared to known-healthy reference structures.
The purpose of INDEAM is to provide an alternative to conventional nondestructive evaluation (NDE) techniques for additively manufactured (AM) parts. In essence, the geometrical complexity characteristic of AM processes combined with a phase-change of the feedstock during fabrication complicate the application of conventional NDE techniques by limiting direct access for measurement probes to surfaces and permitting the introduction of internal defects that are not present in the feedstock, respectively. NDE approaches that are capable of surmounting these challenges are typically highly expensive.
In the first portion of this work, the procedure for impedance-based NDE is examined in the context of INDEAM. In consideration of the additional variability inherent in inter-part comparisons - as opposed to part-to-itself comparisons - the metrics used to quantify damage or change to a structure are evaluated. Novel methods of assessing damage through impedance-based evaluation are proposed and compared to existing techniques. In the second portion of this work, the INDEAM process is applied to a wide variety of test objects. This portion considers how the sensitivity of the INDEAM process is affected by defect type, defect size, defect location, part material, and excitation frequency. Additionally, a procedure for studying the variance introduced during the process of instrumenting a structure is presented and demonstrated.