The in situ synthesis of supported ruthenium carbonyls

dc.contributor.authorBergmeister, Joseph Johnen
dc.contributor.committeechairHanson, Brian E.en
dc.contributor.committeememberMason, John G.en
dc.contributor.committeememberDavis, Mark E.en
dc.contributor.committeememberMerola, Joseph S.en
dc.contributor.committeememberWightman, James P.en
dc.contributor.departmentChemistryen
dc.date.accessioned2015-07-10T20:00:14Zen
dc.date.available2015-07-10T20:00:14Zen
dc.date.issued1989en
dc.description.abstractThe compound Ru⁺²(CO)₃Cl₂(THF) spontaneously adsorbs onto MgO, Al₂O₃, SiO₂, and NaY zeolite from THF solution evolving less than 0.1 equivalent of CO to yield a light yellow supported complex. Based on reaction stoichiometry, CO evolution and in situ infrared spectroscopy, the adsorption was found to produce two different surface-bound species depending on the support used. On SiO₂ and NaY zeolite, the surface species Ru⁺²(CO)₃Cl₂(SURFACE) is formed by a ligand substitution of THF for a surface hydroxyl group. When the adsorption is performed on MgO or AI₂O₃, the inorganic oxide acts as a chloride acceptor to form the surface species Ru⁺²(CO)₃(SURFACE)₃. A molecular analog of the adsorbed species Ru(CO)₃Cl₂(SURFACE) was synthesized and characterized by infrared spectroscopy, ¹H NMR, and an X-ray crystal structure. The infrared spectra of the adsorbed species, Ru(CO)₃Cl₂(SURFACE), and the model compound were in close agreement. Model compounds of Ru(CO)₃(SURFACE)₃ were also synthesized: however, these could not be structurally characterized. The reactivity of the adsorbed species, Ru(CO)₃Cl₂(SURFACE) and Ru(CO)₃(SURFACE)₃, towards the formation of supported bimetallics, polynuclear ruthenium carbonyl clusters, and ruthenium bipyridine coordination compounds was investigated. On SiO₂ and NaY zeolite, the chemistry of Ru(CO)₃Cl₂(SURFACE) paralleled that of Ru(CO)₃Cl₂(THF) in solution. On Al₂O₃ and MgO, the chemistry of Ru(CO)₃(SURFACE), was indicative of an adsorbed ruthenium carbonyl-containing no chloride ligands. The bimetallic cluster RuCo₃(CO)₁₂⁻ was synthesized on hydroxylated Al₂O₃ by the disproportionation of RuCo₂(CO)₁₁. The trimeric cluster RuCo₂(CO)₁₁ is spontaneously adsorbed onto AI₂O₃ from a pentane solution yielding the adsorbed species "RuCo₂(CO)₁₀", this was then transformed to the tetrameric cluster RuCo₃(CO)₁₂⁻ by the addition of THF. The adsorbed cluster anion RuCo₃(CO)₁₂⁻ could also be synthesized on AI₂O₃ by the deprotonation of the hydridic cluster HRuCo₃(CO)₁₂. Depending on the route, infrared evidence suggests formation of a solvated or unsolvated anion on the surface.en
dc.description.degreePh. D.en
dc.format.extentx, 110 leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/54492en
dc.language.isoen_USen
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 22250232en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1989.B475en
dc.subject.lcshCarbonyl compounds -- Researchen
dc.titleThe in situ synthesis of supported ruthenium carbonylsen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineChemistryen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1989.B475.pdf
Size:
3.79 MB
Format:
Adobe Portable Document Format