The in situ synthesis of supported ruthenium carbonyls
dc.contributor.author | Bergmeister, Joseph John | en |
dc.contributor.committeechair | Hanson, Brian E. | en |
dc.contributor.committeemember | Mason, John G. | en |
dc.contributor.committeemember | Davis, Mark E. | en |
dc.contributor.committeemember | Merola, Joseph S. | en |
dc.contributor.committeemember | Wightman, James P. | en |
dc.contributor.department | Chemistry | en |
dc.date.accessioned | 2015-07-10T20:00:14Z | en |
dc.date.available | 2015-07-10T20:00:14Z | en |
dc.date.issued | 1989 | en |
dc.description.abstract | The compound Ru⁺²(CO)₃Cl₂(THF) spontaneously adsorbs onto MgO, Al₂O₃, SiO₂, and NaY zeolite from THF solution evolving less than 0.1 equivalent of CO to yield a light yellow supported complex. Based on reaction stoichiometry, CO evolution and in situ infrared spectroscopy, the adsorption was found to produce two different surface-bound species depending on the support used. On SiO₂ and NaY zeolite, the surface species Ru⁺²(CO)₃Cl₂(SURFACE) is formed by a ligand substitution of THF for a surface hydroxyl group. When the adsorption is performed on MgO or AI₂O₃, the inorganic oxide acts as a chloride acceptor to form the surface species Ru⁺²(CO)₃(SURFACE)₃. A molecular analog of the adsorbed species Ru(CO)₃Cl₂(SURFACE) was synthesized and characterized by infrared spectroscopy, ¹H NMR, and an X-ray crystal structure. The infrared spectra of the adsorbed species, Ru(CO)₃Cl₂(SURFACE), and the model compound were in close agreement. Model compounds of Ru(CO)₃(SURFACE)₃ were also synthesized: however, these could not be structurally characterized. The reactivity of the adsorbed species, Ru(CO)₃Cl₂(SURFACE) and Ru(CO)₃(SURFACE)₃, towards the formation of supported bimetallics, polynuclear ruthenium carbonyl clusters, and ruthenium bipyridine coordination compounds was investigated. On SiO₂ and NaY zeolite, the chemistry of Ru(CO)₃Cl₂(SURFACE) paralleled that of Ru(CO)₃Cl₂(THF) in solution. On Al₂O₃ and MgO, the chemistry of Ru(CO)₃(SURFACE), was indicative of an adsorbed ruthenium carbonyl-containing no chloride ligands. The bimetallic cluster RuCo₃(CO)₁₂⁻ was synthesized on hydroxylated Al₂O₃ by the disproportionation of RuCo₂(CO)₁₁. The trimeric cluster RuCo₂(CO)₁₁ is spontaneously adsorbed onto AI₂O₃ from a pentane solution yielding the adsorbed species "RuCo₂(CO)₁₀", this was then transformed to the tetrameric cluster RuCo₃(CO)₁₂⁻ by the addition of THF. The adsorbed cluster anion RuCo₃(CO)₁₂⁻ could also be synthesized on AI₂O₃ by the deprotonation of the hydridic cluster HRuCo₃(CO)₁₂. Depending on the route, infrared evidence suggests formation of a solvated or unsolvated anion on the surface. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | x, 110 leaves | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/54492 | en |
dc.language.iso | en_US | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 22250232 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1989.B475 | en |
dc.subject.lcsh | Carbonyl compounds -- Research | en |
dc.title | The in situ synthesis of supported ruthenium carbonyls | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Chemistry | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1