The Cell Membrane Proteome of the SKBR3/HER2+ Cells and Implications for Cancer Targeted Therapies

TR Number

Date

2023-06-02

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Breast cancer is the second most common type of cancer among women in the US and the second leading cause of cancer death. HER2+ breast cancers represent ~20% of all cancer types, are highly invasive, and can be treated by using targeted therapies against the HER2 receptor. However, these therapies are challenged by the development of drug resistance, often induced by the presence of mutations in the cell-membrane proteins and receptors and/or by alternative signaling pathways that cross-talk with- or transactivate HER2+ triggered signaling. This study was aimed at investigating the cell membrane proteome of SKBR3 cells, representative of HER2+ breast cancers, and the signaling landscape and cellular responses elicited by the cell membrane receptors when the cells are stimulated with either growth factors or therapeutic drugs. It was hypothesized that the identification of a broad range of cell membrane proteins with roles in cancer progression and signaling crosstalk will lead to a more comprehensive understanding of the biological processes that sustain the proliferation of cancer cells, and will guide the selection of more efficient drug targets. The project was conceptualized in three stages: (1) profiling the cell membrane proteins of SKBR3 cells, (2) determining the functional role of the detected cell membrane proteins in the context of cancer hallmarks and exploring their mutational profile, and (3) analyzing the cellular events that occur in response to treatment with a single therapeutic agent or a combination of drugs. Mass spectrometry technologies were used for performing proteomic and phosphoproteomic profiling of SKBR3 cells, detecting changes in the abundance of the detected proteins, and identifying the presence of mutations in the cell membrane proteins. Orthogonal enrichment methods were developed for profiling the low-abundance cell membrane proteins, for generating a rich landscape of cell membrane receptors with various functional roles and relevance to the cancer hallmarks, and for enabling the detection of potentially new drivers of aberrant proliferation. The analysis of serum-starved, stimulated (with growth factors), or inhibited (with kinase inhibitors) cells revealed alternative protein players and crosstalk activities that determine the fate of cells, and that may fuel the development of resistance to treatment with drugs. The proteome profiles that were generated in this project expand the opportunities for targeting cancer-relevant processes beyond proliferation, which is commonly attempted, broadening the landscape to also include apoptosis, invasion, and metastasis. Altogether, the findings that emerged from this work will lay the ground for future studies that aim at developing more complex and effective targeted cancer treatment approaches.

Description

Keywords

Proteomics, Mass spectrometry, Breast cancer, Signaling pathways, Drug targets, Cancer hallmarks, Phosphoproteomics, Proteogenomics

Citation