VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Connecting Thermodynamics and Kinetics of Ligand Controlled Colloidal Pd Nanoparticle Synthesis

dc.contributor.authorLi, Wenhuien
dc.contributor.committeechairKarim, Ayman M.en
dc.contributor.committeememberDavis, Richey M.en
dc.contributor.committeememberDucker, William A.en
dc.contributor.committeememberIvanov, Sergei A.en
dc.contributor.departmentChemical Engineeringen
dc.date.accessioned2020-10-16T06:00:17Zen
dc.date.available2020-10-16T06:00:17Zen
dc.date.issued2019-04-24en
dc.description.abstractColloidal nanoparticles are widely used for industrial and scientific purposes in many fields, including catalysis, biosensing, drug delivery, and electrochemistry. It has been reported that most of the functional properties and performance of the nanoparticles are highly dependent on the particle size and morphology. Therefore, controlled synthesis of nanomaterials with desired size and structure is greatly beneficial to the application. This dissertation presents a systematic study on the effect of ligands on the colloidal Pd nanoparticle synthesis mechanism, kinetics, and final particle size. Specifically, the research is focused on investigating how the ligand bindings to different metal species, i.e., metal precursor and nanoparticle surface, affect the nucleation and growth pathways and rates and connecting the binding thermodynamics to the kinetics quantitatively. The first part of the work (Chapters 4 and 5) is establishing isothermal titration calorimetry (ITC) methodology for obtaining the thermodynamic values (Gibbs free energy, equilibrium constant, enthalpy and entropy) of the ligand-metal precursor binding reactions, and the simultaneous metal precursor trimer dissociation. In brief, the binding products and reactions were characterized by nuclear magnetic resonance (NMR), and an ITC model was developed to fit the unique ITC heat curve and extract the thermodynamic properties of the reactions above. Furthermore, in Chapter 6, the thermodynamic properties, especially the entropy trend changing with the ligand chain length was investigated on different metal precursors based on the established ITC methodology, showing that the entropic penalty plays a significant role in the binding equilibrium. The second part of the dissertation (Chapter 7 and 8) presents the kinetic and mechanistic study on size-tuning of the colloidal Pd nanoparticles only by changing different coordinating solvents as ligands together with the trioctylphosphine ligand. In-situ small angle X-ray scattering was applied to characterize the time evolutions of size, size distribution, and particle concentration using synthesis reactor connected to a capillary flow cell. From the real-time kinetic measurements, the nucleation and growth rates were calculated and correlated with the thermodynamics, i.e., Gibbs free energies of solvent-ligand-metal precursor reactivity and ligand-nanoparticle surface binding which were modified by the coordination of different solvents. Higher reactivity leads to faster nucleation and high nanoparticle concentration, and stronger solvent/ligand-particle coordination energy results in higher ligand capping density and slower growth. The interplay of both effects reduces the final particle size. Furthermore, because of the significance of the ligand-metal interactions, the synthesis temperature and ligand to metal precursor ratio were systematically to modify the relative binding between the ligand and precursor, and the ligand and nanoparticle, and determine the effect on the nucleation and growth rates. The results show that the relative rates of nucleation and growth is critical to the final size. A methodology for using the in-situ measurements to predict the final size by developing a kinetic model based is discussed.en
dc.description.abstractgeneralMetal nanoparticles dispersed in solution phase, i.e., colloidal nanoparticles, are of great scientific interests due to their unique properties different from bulk metal materials. The size, shape and other morphology features can largely affect the nanomaterial properties and functional performances. Therefore, a successful synthesis of nanoparticles with desired structures is highly beneficial to the development of their application. Ligands, which are long-chain molecules that can cap on the surface of the nanoparticles, have been known as stabilizers of the nanoparticles in the solution phase. Whereas in recent studies, it has been found that changing the ligand type and concentration in the synthesis can result in different sizes and shapes of nanomaterials, which indicates that the ligands are playing critical roles in the synthesis mechanisms to control the kinetics. To have a better understanding on the control effects of the ligands, systematic studies were conducted on the ligand interactions (bindings) between the ligand-metal compound (as the metal source and initial agent in the nanomaterial synthesis) and ligand-nanoparticle surface, of which both can be quantified by thermodynamics. Using isothermal titration calorimetry, the ligand-metal precursor binding strength was measured and found to be dependent on ligand chain length and the metal precursors, which further affects the reactivity of the metal precursor based on the results of density functional theory calculations. On the other hand, the ligand-nanoparticle surface binding strength was found to affect the capping density of the ligands on the nanoparticle surface. In order to connect the thermodynamics to the kinetics, namely the nucleation (formation of new particles) and growth (particle size increase) rates, small angle X-ray scattering (SAXS) characterization was performed in real time during the synthesis on the nanoparticles. This technique allows the capture of the size, size distribution and concentration of nanoparticles changing with time, and the nucleation and growth rates were further calculated from the SAXS data. By changing solvents with the same functions of ligands but of different coordinating abilities, a correlation between the kinetics and thermodynamics was observed. The nucleation rate increases with the metal precursor reactivity, which corresponds to stronger solvent binding to the precursor. On the other hand, the stronger ligand-nanoparticle binding slows down the growth by lowering the surface capping density. To go deeper into the ligand-metal binding and kinetics correlation, the binding properties were tuned by changing other synthesis conditions, i.e., different temperatures and ligand to metal ratios (ligand concentration), and a qualitative discussion was given on the effects of these conditions on the synthesis kinetics and final particle size.en
dc.description.degreeDoctor of Philosophyen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:19405en
dc.identifier.urihttp://hdl.handle.net/10919/100595en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectColloidal metal nanoparticlesen
dc.subjectPd nanoparticlesen
dc.subjectnanoparticle synthesisen
dc.subjectliganden
dc.subjectthermodynamicsen
dc.subjectnucleation and growth kineticsen
dc.titleConnecting Thermodynamics and Kinetics of Ligand Controlled Colloidal Pd Nanoparticle Synthesisen
dc.typeDissertationen
thesis.degree.disciplineChemical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.nameDoctor of Philosophyen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Li_W_D_2019.pdf
Size:
7.68 MB
Format:
Adobe Portable Document Format
Name:
Li_W_D_2019_support_1.zip
Size:
548.35 KB
Format:
Description:
Supporting documents