Discrete dynamical systems in solving H-equations
dc.contributor.author | Chen, Jun | en |
dc.contributor.committeecochair | Bowden, Robert L. | en |
dc.contributor.committeecochair | Greenberg, William | en |
dc.contributor.committeemember | Klaus, Martin | en |
dc.contributor.committeemember | Lin, Tao | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T21:10:54Z | en |
dc.date.adate | 2006-05-11 | en |
dc.date.available | 2014-03-14T21:10:54Z | en |
dc.date.issued | 1995-08-17 | en |
dc.date.rdate | 2006-05-11 | en |
dc.date.sdate | 2006-05-11 | en |
dc.description.abstract | Three discrete dynamical models are used to solve the Chandrasekhar H-equation with a positive or negative characteristic function. Two of them produce series of continuous functions which converge to the solution of the H-equation. An iteration model of the nth approximation for the H-equation is discussed. This is a nonlinear n-dimensional dynamical system. We study not only the solutions of the nth approximation for the H-equation but also the mathematical structure and behavior of the orbits with respect to the parameter function, i.e. characteristic function. The dynamical system is controlled by a manifold. For n=2, stability of the fixed points is studied. The stable and unstable manifolds passing through the hyperbolically fixed point are obtained. Globally, the bounded orbits region is given. For parameter c in some region a periodic orbit of one dimension will cause periodic orbits in the higher dimensional system. For changing parameter c, the bifurcation points are discussed. For c ∈ (-5.6049, 1] the system has a series of double bifurcation points. For c ∈ (-8, -5.6049] chaos appears. For c in a window contained the chaos region, a new bifurcation phenomenon is found. For c ≤ -7 any periodic orbits appear. For c in the chaos region the behavior of attractor is discussed. Chaos occurs in the n-dimensional dynamical system. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | v, 95 leaves | en |
dc.format.medium | BTD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.other | etd-05112006-154810 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-05112006-154810/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/37761 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | LD5655.V856_1995.C446.pdf | en |
dc.relation.isformatof | OCLC# 33433282 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Chandrasekhar H-equation | en |
dc.subject.lcc | LD5655.V856 1995.C446 | en |
dc.title | Discrete dynamical systems in solving H-equations | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1995.C446.pdf
- Size:
- 1.82 MB
- Format:
- Adobe Portable Document Format
- Description: