Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields

dc.contributorVirginia Techen
dc.contributor.authorAfkhami, Shahriaren
dc.contributor.authorTyler, A. J.en
dc.contributor.authorRenardy, Yuriko Y.en
dc.contributor.authorRenardy, Michael J.en
dc.contributor.authorSt Pierre, T. G.en
dc.contributor.authorWoodward, R. C.en
dc.contributor.authorRiffle, Judy S.en
dc.contributor.departmentChemistryen
dc.contributor.departmentMathematicsen
dc.date.accessed2014-07-15en
dc.date.accessioned2014-07-21T15:49:38Zen
dc.date.available2014-07-21T15:49:38Zen
dc.date.issued2010-11en
dc.description.abstractThe effect of applied magnetic fields on the deformation of a biocompatible hydrophobic ferrofluid drop suspended in a viscous medium is investigated numerically and compared with experimental data. A numerical formulation for the time-dependent simulation of magnetohydrodynamics of two immiscible non-conducting fluids is used with a volume-of-fluid scheme for fully deformable interfaces. Analytical formulae for ellipsoidal drops and near-spheroidal drops are reviewed and developed for code validation. At low magnetic fields, both the experimental and numerical results follow the asymptotic small deformation theory. The value of interfacial tension is deduced from an optimal fit of a numerically simulated shape with the experimentally obtained drop shape, and appears to be a constant for low applied magnetic fields. At high magnetic fields, on the other hand, experimental measurements deviate from numerical results if a constant interfacial tension is implemented. The difference can be represented as a dependence of apparent interfacial tension on the magnetic field. This idea is investigated computationally by varying the interfacial tension as a function of the applied magnetic field and by comparing the drop shapes with experimental data until a perfect match is found. This estimation method provides a consistent correlation for the variation in interfacial tension at high magnetic fields. A conclusion section provides a discussion of physical effects which may influence the microstructure and contribute to the reported observations.en
dc.description.sponsorshipNational Science Foundation under grants DMS-0456086, DMS-0907788 and DMS-0707727en
dc.description.sponsorshipInstitute for Mathematics and its Applications (Minnesota)en
dc.description.sponsorshipTeraGrid Large Resource Allocations Grant MCA08X019, NCSA grant CTS060022en
dc.description.sponsorshipCommonwealth of Australia under the International Science Linkages programen
dc.description.sponsorshipARC Nanotechnology Network and the University of Western Australia Convocation Postgraduate Travel Award.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationAfkhami, S.; Tyler, A. J.; Renardy, Y.; Renardy, M.; St Pierre, T. G.; Woodward, R. C.; Riffle, J. S., "Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields," J. Fluid Mech. (2010), vol. 663, pp. 358-384. DOI: 10.1017/s0022112010003551en
dc.identifier.doihttps://doi.org/10.1017/s0022112010003551en
dc.identifier.issn0022-1120en
dc.identifier.urihttp://hdl.handle.net/10919/49632en
dc.identifier.urlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7921459&fulltextType=RA&fileId=S0022112010003551en
dc.language.isoenen
dc.publisherCambridge University Pressen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectdropsen
dc.subjectferrofluiden
dc.subjectmagnetohydrodynamicsen
dc.subjectvolume-of-fluid methoden
dc.subjectelectric-fielden
dc.subjectsurface-tensionen
dc.subjectnumerical-simulationen
dc.subjectretinal-detachmenten
dc.subjectinduced motionen
dc.subjectliquid-dropen
dc.subjectstabilityen
dc.subjectflowen
dc.subjectnanoparticlesen
dc.subjectpendanten
dc.subjectmechanicsen
dc.subjectphysics, fluids & plasmasen
dc.titleDeformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fieldsen
dc.title.serialJournal of Fluid Mechanicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
S0022112010003551a.pdf
Size:
2.43 MB
Format:
Adobe Portable Document Format
Description:
Main article