Bio-Inspired Control of Roughness and Trailing Edge Noise

TR Number

Date

2017-04-27

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Noise from fluid flow over rough surfaces is an important consideration in the design and performance of certain vehicles with high surface-area-to-perimeter ratios. A new method of noise control based on the anatomy of owls is developed and consists of fabric or fibrous canopies suspended above the surface. The method is tested experimentally and is found to reduce the total far-field noise emitted by the surface. The treatment also is found to reduce the magnitude of pressure fluctuations felt by the underlying surface by up to three orders of magnitude. Experimental investigations into the effects of geometric parameters of the canopies lead to an optimized design which maximizes noise reduction.

The results obtained during the canopy experiment inspired a separate new device for the reduction of trailing edge noise. This type of noise is generated by flow past the wing of an aircraft or the blades of a wind turbine, and is a source of annoyance for those in surrounding communities. The newly developed treatment consists of small fins, or "finlets," placed near the trailing edge of an airfoil. The treatment is tested experimentally at near-full-scale conditions and is found to reduce the magnitude of far-field noise by up to 10 dB. Geometric parameters of the finlets are tested to determine the optimal size and spacing of the finlets to maximize noise reduction. Follow-up computational and experimental studies reveal the fluid mechanics behind the noise reduction by showing that the finlets produce a velocity deficit in the flow near the trailing edge and limit the magnitude and spanwise correlation lengthscale of turbulence near the trailing edge, factors which determine the magnitude of far-field noise.

In a final experiment, the finlets are applied to a marine propeller and are found to reduce not only trailing edge noise, but also noise caused by the bluntness of the trailing edge. The results of this experiment show the potential usefulness of finlets to reduce noise from rotating systems, such as fans or propellers, as well as from structures which feature blunt trailing edges.

Description

Keywords

Bio-Inspired, Aeroacoustics, Roughness Noise, Trailing Edge Noise, Noise Control

Citation