A Derivative-Free Observability Analysis Method of Stochastic Power Systems
dc.contributor.author | Zheng, Zongsheng | en |
dc.contributor.author | Xu, Yijun | en |
dc.contributor.author | Mili, Lamine M. | en |
dc.contributor.author | Liu, Zhigang | en |
dc.contributor.author | Korkali, Mert | en |
dc.contributor.author | Wang, Yuhong | en |
dc.date.accessioned | 2024-01-22T20:35:06Z | en |
dc.date.available | 2024-01-22T20:35:06Z | en |
dc.date.issued | 2021 | en |
dc.description.abstract | The observability analysis of a time-varying nonlinear dynamic model has recently attracted the attention of power engineers due to its vital role in power system dynamic state estimation. Generally speaking, due to the nonlinearity of the power system dynamic model, the traditional derivative-based observability analysis approaches either rely on the linear approximation to simplify the problem or require a complicated derivation procedure that ignores the uncertainties of the dynamic system model and of the observations represented by stochastic noises. Facing this challenge, we propose a novel polynomial-chaos-based derivative-free observability analysis approach that not only brings a low complexity, but also enables us to quantify the degree of observability by considering the stochastic nature of the dynamic systems. The excellent performances of the proposed method is demonstrated using simulations of a decentralized dynamic state estimation performed on a power system using a synchronous generator model with IEEE-DC1A exciter and a TGOV1 turbine-governor. | en |
dc.description.version | Published version | en |
dc.format.extent | 5 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/PESGM46819.2021.9637959 | en |
dc.identifier.eissn | 1944-9933 | en |
dc.identifier.isbn | 9781665405072 | en |
dc.identifier.issn | 1944-9925 | en |
dc.identifier.orcid | Mili, Lamine [0000-0001-6134-3945] | en |
dc.identifier.uri | https://hdl.handle.net/10919/117586 | en |
dc.identifier.volume | 2021-July | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | Public Domain (U.S.) | en |
dc.rights.uri | http://creativecommons.org/publicdomain/mark/1.0/ | en |
dc.subject | Dynamic state estimation | en |
dc.subject | observability analysis | en |
dc.subject | derivative-free analysis | en |
dc.subject | polynomial chaos | en |
dc.title | A Derivative-Free Observability Analysis Method of Stochastic Power Systems | en |
dc.title.serial | 2021 IEEE Power & Energy Society General Meeting (PESGM) | en |
dc.type | Conference proceeding | en |
dc.type.dcmitype | Text | en |
dc.type.other | Proceedings Paper | en |
dc.type.other | Book in series | en |
pubs.finish-date | 2021-07-29 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.start-date | 2021-07-26 | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Yijun-Mili_A_Derivative-Free_Observability_Analysis_Method_of_Stochastic_Power_Systems.pdf
- Size:
- 1.12 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1