Teacher Pedagogical Choice: Analyzing Engineering Professional Development Programs and COVID in Middle School Science Classrooms

TR Number

Date

2023-01-25

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Engineering education is increasingly becoming considered an important component of STEM integration in formal pre-college settings. Professional development programs take a significant role in helping teachers develop necessary classroom practices to integrate engineering into their curriculum. The COVID pandemic has further complicated instructional conditions, necessitating emergency remote learning methods to continue instruction amidst safety concerns. Combined with a general struggle to scaffold integration of engineering in K-12 classrooms, emergent conditions that restrict instructional choices such as pandemics threaten to repeatedly aggravate future efforts and make it prudent to consider the pedagogical choices teachers are able to make for STEM integration and what future professional development programs should try to do with teachers to enable them. This research aims to describe and explain the conditions and dynamics related to teacher pedagogical choice to employ engineering design activities in their classes both within the context of a partnership program and during the COVID pandemic. Using end-of-program semi-structured interviews with participant teachers in the VT PEERS (Virginia Tech Partnering with Educators and Engineers in Rural Schools) program collected in the midst of the pandemic, data was coded with a focus upon identifying connections with a dynamic framework for pedagogical choice as well as identifying and explaining the expansion of practices in the two contexts. The coding process yielded a set of themes for conditions and developments teachers experienced in the process of conducting classes with changes induced by the program and by measures in response to COVID. Findings from the study show that teachers with supports that overcome or nullify inhibitive factors for pedagogical choice will be able to adopt and develop innovative practices. Teachers balance proposed changes with their own sense of professional expectations influenced by internalized, structural, and cultural conceptions of their work. Remote learning modalities and COVID-induced safety measures constrained the ability to teach according to familiar principles of instruction, harming teachers' beliefs and development in the practice of the modalities. Based on these findings, the framework for teacher pedagogical choice showed VT PEERS' effectiveness in its opening presentation and execution to set the stage for teachers to make innovative choices to employ engineering activities, yet it was not as useful in describing how the remote learning measures taken during COVID would not lead to expanded practices for that modality. Thus, there is a need for a model that includes complex interactions between the teachers and their environment that promote or inhibit teacher agency. Such a model would inform a more empowering design and execution of professional development initiatives than feature-dependent frameworks. COVID also demonstrates that preparation will be necessary to equip teachers with more efficacious and flexible practices for remote learning to prevent further damage to student outcomes given that the potential for recurring pandemic conditions in the future makes remote learning more of an expectation than an emergency.

Description

Keywords

engineering education, pedagogical choice, remote learning, COVID-19, professional development, complexity theory

Citation