VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Development of tools to study the association of transposons to agronomic traits

Files

TR Number

Date

2020-05-21

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Transposable elements (Transposons; TEs) constitute the majority of DNA in genomes and are a major source of genetic polymorphisms. TEs act as potential regulators of gene expression and lead to phenotypic plasticity in plants and animals. In crops, several TEs were identified to influence alleles associated with important agronomic traits, such as apical dominance in maize and seed number in rice. Crops may harbor more TE-mediated genetic regulations than expected in view of multifunctional TEs in genomes. However, tools that accurately annotate TEs and clarify their associations with agronomic traits are still lacking, which largely limits applications of TEs in crop breeding. Here we 1) evaluate performances of popular tools and strategies to identify TEs in genomes, 2) develop a tool 'DeepTE' to annotate TEs based on deep learning models, and 3) develop a tool 'TE-marker' to identify potential TE-regulated alleles associated with agronomic traits. As a result, we propose a series of recommendations and a guideline to develop a comprehensive library to precisely identify TEs in genomes. Secondly, 'DeepTE' classifies TEs into 15-24 super families according to sequences from plants, metazoans, and fungi. For unknown sequences, this tool can distinguish non-TEs and TEs in plant species. Finally, the 'TE-marker' tool builds a TE-based marker system that is able to cluster rice populations similar to a classical SNP marker approach. This system can also detect association peaks that are equivalent to the ones produced by SNP markers. 'TE-marker' is a novel complementary approach to the classical SNP markers that it assists in revealing population structures and in identifying alleles associated with agronomic traits.

Description

Keywords

Transposon, Genetic marker, GWAS, Agronomic traits

Citation