High-latitude sedimentation in response to climate variability during the Cenozoic

TR Number

Date

2024-01-03

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Here we investigate sedimentological responses to past climate change in shallow to deep marine depositional environments. Our primary study spans from the Late Pliocene to the Pleistocene (3.3 to 0.7 Ma), and features results from two International Ocean Discovery Program (IODP) Sites U1525 and U1524. Each of these sites is discussed in separate chapters here (Chapters 1 and 2). This interval experienced the change from the warming of the Late Pliocene, known as the Mid-Piacenzian Warming Period, to the Pleistocene cooling. This shift significantly impacted the expansion of the West Antarctic Ice Sheet, sea ice/polynya formation, and, notably, the genesis of Antarctic Bottom Water (AABW), a crucial component of the global thermohaline circulation. In Chapter 1, we propose that turbidite currents, arising from the formation of dense shelf water (DSW) in the Ross Sea (a precursor to AABW), leave a distinct record in the levees of Hillary Canyon. This canyon acts as a conduit, channeling DSW into the deep ocean and contributing to AABW production. By analyzing turbidite beds based on their frequency, thickness, and grain size, we gain insights into the historical occurrence and magnitude of these currents. Furthermore, we explore the influence of factors such as shelf availability and sea ice/polynya formation within the broader climate context of AABW formation. Chapter 2 shifts its focus to the sedimentological variability from shelf-to-slope along Hillary Canyon. This chapter examines the turbidite record associated with AABW formation within the shared timeframe (2.1 to 0.7 million years ago) between IODP Sites U1524 and U1525, and the impact of along slope currents and other processes in the sedimentary deposition and transport.

The second study interval (Chapter 3), focuses on the regional sedimentological response proximal to a hydrothermal vent complex associated with the Paleocene-Eocene Thermal Maximum (PETM; ca. 56 Ma), a global warming event during which thousands of Gt C was released into the ocean-atmosphere on Kyr timescales. IODP Site U1568, strategically located near the hydrothermal vent complex and part of a broader drilling transect in the Modgunn Arch, North Atlantic, is the main study subject. This site's proximity to the vent complex offers a distinctive environment for refining our understanding of stratigraphy and sedimentology within the PETM. We achieve this through a comprehensive analysis of grain size and composition, coupled with a comparison to XRF data. Our findings show that the timing between the onset of the PETM and the response of the sedimentary system to the warming, reflected in the grain size coarsening after the start of the PETM, is not synchronous. Notably, the transition from a marine to a more terrestrial composition predates this shift in grain size, aligning with the PETM onset instead.

Description

Keywords

sedimentology, high-latitude sedimentation, Antarctic Bottom Water, submarine canyon deposition, hydrothermal vent, Pliocene, Pleistocene, Paleocene-Eocene, climate change

Citation