The role of priority effects in the assembly of the amphibian microbiome
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Communities are a critical link that impact how species-level population dynamics translate into ecosystem functions, and thus, understanding community assembly is an important goal of ecology. Variation in the relative importance of the four processes of drift, selection, speciation, and dispersal likely govern much of the variation that is observed in community structure across landscapes. Microbial communities provide critical functions across an array of environments, but only recently have technological advances in DNA sequencing allowed us to study these communities with higher resolution. My dissertation research has investigated community assembly in host-associated microbial communities, with a focus on understanding how stochasticity in dispersal that leads to priority affects can impact bacterial community assembly in amphibian embryos. In chapter 1, I experimentally show that priority effects resulting from stochastic dispersal can be observed in the microbiome of newly-hatched hourglass treefrog (Dendropsophus ebraccatus) tadpoles. Changes in microbiome composition due to priority effects could be observed in a simple two bacteria system and when the inoculation by the initial bacteria is followed by a more diverse community inoculum. Outcomes of my two taxa system in co-culture do not strictly mirror those observed in treefrog embryos, highlighting that priority effect outcomes are context dependent. Additionally, these results provide support that priority effects do not benefit all bacterial species equally and the magnitude of these effects will be dependent on the traits of individual colonists. In chapter 2 I demonstrate that priority effects are not unique to the hourglass treefrog system but can be observed in spring peeper (Pseudacris crucifer) tadpoles as well. This study demonstrates the applicability of priority effects in increasing the abundance of target probiotic taxa; a benefit to amphibian populations facing threats by a lethal fungal pathogen. By treating embryos with a priority inoculation of Janthinobacterium lividum, a bacterial species known to inhibit fungal pathogen growth, I increased the relative abundance of J. lividum on newly hatched tadpoles. I also provide evidence that closely-related species of bacteria can effectively co-exist regardless of priority inoculation. An understanding of variation in the amphibian microbiome across life stages in the wild is required to better understand the long-term impacts of priority effects in embryos. My final chapter, therefore, examined compositional changes in the microbiomes of locally occurring amphibians in Virginia across the egg, tadpole, and juvenile developmental stages. In this study, I show characterize the initial egg microbiome across amphibian species and demonstrate that egg microbiomes, are distinct between species but are more similar across species than tadpole or juvenile microbiomes. Additionally, I show that minor differences in host environment can lead to differences in the microbiome structure of conspecific tadpoles. Overall, my dissertation empirically demonstrates the role of dispersal, and more specifically priority effects, in the assembly of the vertebrate microbiome.