The Quantum Automorphism Group and Undirected Trees

dc.contributor.authorFulton, Melanie B.en
dc.contributor.committeechairLetzter, Gailen
dc.contributor.committeememberLinnell, Peter A.en
dc.contributor.committeememberHaskell, Peter E.en
dc.contributor.committeememberFarkas, Daniel R.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T20:14:19Zen
dc.date.adate2006-08-14en
dc.date.available2014-03-14T20:14:19Zen
dc.date.issued2006-07-21en
dc.date.rdate2006-08-14en
dc.date.sdate2006-07-26en
dc.description.abstractA classification of all undirected trees with automorphism group isomorphic to $(Z_2)^l$ is given in terms of a vertex partition called a refined star partition. Recently the notion of a quantum automorphism group has been defined by T. Banica and J. Bichon. The quantum automorphism group is similar to the classical automorphism group, but has relaxed commutivity. The classification of all undirected trees with automorphism group isomorphic to $(Z_2)^l$ along with a similar classification of all undirected asymmetric trees is used to give some insight into the structure of the quantum automorphism group for such graphs.en
dc.description.degreePh. D.en
dc.identifier.otheretd-07262006-091536en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-07262006-091536/en
dc.identifier.urihttp://hdl.handle.net/10919/28405en
dc.publisherVirginia Techen
dc.relation.haspartMF_thesis.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectAutomorphism Groupen
dc.subjectHopf Algebrasen
dc.subjectQuantum Automorphismen
dc.titleThe Quantum Automorphism Group and Undirected Treesen
dc.typeDissertationen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MF_thesis.pdf
Size:
387.99 KB
Format:
Adobe Portable Document Format