Representation theory of the diagram An over the ring k[[x]]
dc.contributor.author | Corwin, Stephen P. | en |
dc.contributor.committeechair | Green, Edward | en |
dc.contributor.committeemember | Farkas, Daniel R. | en |
dc.contributor.committeemember | Wheeler, Robert | en |
dc.contributor.committeemember | Aull, Charles E. | en |
dc.contributor.committeemember | Brown, E.A. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-08-13T14:38:59Z | en |
dc.date.available | 2014-08-13T14:38:59Z | en |
dc.date.issued | 1986 | en |
dc.description.abstract | Fix R = k[[x]]. Let Q<sub>n</sub> be the category whose objects are ((M₁,...,M<sub>n</sub>),(f₁,...,f<sub>n-1</sub>)) where each M<sub>i</sub> is a free R-module and f<sub>i</sub>:M<sub>i</sub>⟶M<sub>i+1</sub> for each i=1,...,n-1, and in which the morphisms are the obvious ones. Let β<sub>n</sub> be the full subcategory of Ω<sub>n</sub> in which each map f<sub>i</sub> is a monomorphism whose cokernel is a torsion module. It is shown that there is a full dense functor Ω<sub>n</sub>⟶β<sub>n</sub>. If X is an object of β<sub>n</sub>, we say that X <u>diagonalizes</u> if X is isomorphic to a direct sum of objects ((M₁,...,M<sub>n</sub>),(f₁,...,f<sub>n-1</sub>)) in which each M<sub>i</sub> is of rank one. We establish an algorithm which diagonalizes any diagonalizable object X of β<sub>n</sub>, and which fails only in case X is not diagonalizable. Let Λ be an artin algebra of finite type. We prove that for a fixed C in mod(Λ) there are only finitely many modules A in mod(Λ) (up to isomorphism) for which a short exact sequence of the form 0⟶A⟶B⟶C⟶0 is indecomposable. | en |
dc.description.admin | incomplete_metadata | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | v, 65 leaves | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/50001 | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 14701354 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1986.C678 | en |
dc.subject.lcsh | Artin algebras | en |
dc.subject.lcsh | Rings (Algebra) | en |
dc.subject.lcsh | Morphisms (Mathematics) | en |
dc.title | Representation theory of the diagram An over the ring k[[x]] | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1986.C678.pdf
- Size:
- 1.36 MB
- Format:
- Adobe Portable Document Format
- Description: