Representation theory of the diagram An over the ring k[[x]]

dc.contributor.authorCorwin, Stephen P.en
dc.contributor.committeechairGreen, Edwarden
dc.contributor.committeememberFarkas, Daniel R.en
dc.contributor.committeememberWheeler, Roberten
dc.contributor.committeememberAull, Charles E.en
dc.contributor.committeememberBrown, E.A.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-08-13T14:38:59Zen
dc.date.available2014-08-13T14:38:59Zen
dc.date.issued1986en
dc.description.abstractFix R = k[[x]]. Let Q<sub>n</sub> be the category whose objects are ((M₁,...,M<sub>n</sub>),(f₁,...,f<sub>n-1</sub>)) where each M<sub>i</sub> is a free R-module and f<sub>i</sub>:M<sub>i</sub>⟶M<sub>i+1</sub> for each i=1,...,n-1, and in which the morphisms are the obvious ones. Let β<sub>n</sub> be the full subcategory of Ω<sub>n</sub> in which each map f<sub>i</sub> is a monomorphism whose cokernel is a torsion module. It is shown that there is a full dense functor Ω<sub>n</sub>⟶β<sub>n</sub>. If X is an object of β<sub>n</sub>, we say that X <u>diagonalizes</u> if X is isomorphic to a direct sum of objects ((M₁,...,M<sub>n</sub>),(f₁,...,f<sub>n-1</sub>)) in which each M<sub>i</sub> is of rank one. We establish an algorithm which diagonalizes any diagonalizable object X of β<sub>n</sub>, and which fails only in case X is not diagonalizable. Let Λ be an artin algebra of finite type. We prove that for a fixed C in mod(Λ) there are only finitely many modules A in mod(Λ) (up to isomorphism) for which a short exact sequence of the form 0⟶A⟶B⟶C⟶0 is indecomposable.en
dc.description.adminincomplete_metadataen
dc.description.degreePh. D.en
dc.format.extentv, 65 leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/50001en
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 14701354en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1986.C678en
dc.subject.lcshArtin algebrasen
dc.subject.lcshRings (Algebra)en
dc.subject.lcshMorphisms (Mathematics)en
dc.titleRepresentation theory of the diagram An over the ring k[[x]]en
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1986.C678.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description: