Convergence-order analysis of branch-and-bound algorithms for constrained problems
dc.contributor.author | Kannan, Rohit | en |
dc.contributor.author | Barton, Paul I. | en |
dc.date.accessioned | 2025-02-18T13:10:29Z | en |
dc.date.available | 2025-02-18T13:10:29Z | en |
dc.date.issued | 2017-06-01 | en |
dc.description.abstract | The performance of branch-and-bound algorithms for deterministic global optimization is strongly dependent on the ability to construct tight and rapidly convergent schemes of lower bounds. One metric of the efficiency of a branch-and-bound algorithm is the convergence order of its bounding scheme. This article develops a notion of convergence order for lower bounding schemes for constrained problems, and defines the convergence order of convex relaxation-based and Lagrangian dual-based lower bounding schemes. It is shown that full-space convex relaxation-based lower bounding schemes can achieve first-order convergence under mild assumptions. Furthermore, such schemes can achieve second-order convergence at KKT points, at Slater points, and at infeasible points when second-order pointwise convergent schemes of relaxations are used. Lagrangian dual-based full-space lower bounding schemes are shown to have at least as high a convergence order as convex relaxation-based full-space lower bounding schemes. Additionally, it is shown that Lagrangian dual-based full-space lower bounding schemes achieve first-order convergence even when the dual problem is not solved to optimality. The convergence order of some widely-applicable reduced-space lower bounding schemes is also analyzed, and it is shown that such schemes can achieve first-order convergence under suitable assumptions. Furthermore, such schemes can achieve second-order convergence at KKT points, at unconstrained points in the reduced-space, and at infeasible points under suitable assumptions when the problem exhibits a specific separable structure. The importance of constraint propagation techniques in boosting the convergence order of reduced-space lower bounding schemes (and helping mitigate clustering in the process) for problems which do not possess such a structure is demonstrated. | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 753-813 | en |
dc.format.extent | 61 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1007/s10898-017-0532-y | en |
dc.identifier.eissn | 1573-2916 | en |
dc.identifier.issn | 0925-5001 | en |
dc.identifier.issue | 4 | en |
dc.identifier.orcid | Kannan, Rohit [0000-0002-7963-7682] | en |
dc.identifier.uri | https://hdl.handle.net/10919/124620 | en |
dc.identifier.volume | 71 | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Global optimization | en |
dc.subject | Constrained optimization | en |
dc.subject | Convergence order | en |
dc.subject | Convex relaxation | en |
dc.subject | Lagrangian dual | en |
dc.subject | Branch-and-bound | en |
dc.subject | Lower bounding scheme | en |
dc.subject | Reduced-space | en |
dc.title | Convergence-order analysis of branch-and-bound algorithms for constrained problems | en |
dc.title.serial | Journal of Global Optimization | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Engineering | en |
pubs.organisational-group | Virginia Tech/Engineering/Industrial and Systems Engineering | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Convergence-Order Analysis of Branch-and-Bound Algorithms for Constrained Problems.pdf
- Size:
- 1.26 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version
License bundle
1 - 1 of 1