Application of approximate matrix factorization to high order linearly implicit Runge-Kutta methods

dc.contributor.authorZhang, H.en
dc.contributor.authorSandu, Adrianen
dc.contributor.authorTranquilli, Paulen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2017-03-06T18:42:38Zen
dc.date.available2017-03-06T18:42:38Zen
dc.date.issued2015-10-01en
dc.description.abstractLinearly implicit Runge-Kutta methods with approximate matrix factorization can solve efficiently large systems of differential equations that have a stiff linear part, e.g. reaction-diffusion systems. However, the use of approximate factorization usually leads to loss of accuracy, which makes it attractive only for low order time integration schemes. This paper discusses the application of approximate matrix factorization with high order methods; an inexpensive correction procedure applied to each stage allows to retain the high order of the underlying linearly implicit Runge-Kutta scheme. The accuracy and stability of the methods are studied. Numerical experiments on reaction-diffusion type problems of different sizes and with different degrees of stiffness illustrate the efficiency of the proposed approach.en
dc.description.versionPublished versionen
dc.format.extent196 - 210 (15) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1016/j.cam.2015.03.005en
dc.identifier.issn0377-0427en
dc.identifier.urihttp://hdl.handle.net/10919/75284en
dc.identifier.volume286en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000354001700016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectMathematics, Applieden
dc.subjectMathematicsen
dc.subjectApproximate matrix factorizationen
dc.subjectLinearly implicit Runge-Kutta methodsen
dc.subjectHigh orderen
dc.subjectReaction-diffusion equationsen
dc.subjectPARTIAL-DIFFERENTIAL EQUATIONSen
dc.subjectODESen
dc.subjectAMFen
dc.titleApplication of approximate matrix factorization to high order linearly implicit Runge-Kutta methodsen
dc.title.serialJournal of Computational And Applied Mathematicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1408.3622v2.pdf
Size:
319.03 KB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: