An arbitrary Lagrangian-Eulerian method for simulating interfacial dynamics between a hydrogel and a fluid

dc.contributor.authorLi, Leien
dc.contributor.authorZhang, Jiaqien
dc.contributor.authorXu, Zelaien
dc.contributor.authorYoung, Y. -N.en
dc.contributor.authorFeng, James J.en
dc.contributor.authorYue, Pengtaoen
dc.date.accessioned2022-12-21T19:40:28Zen
dc.date.available2022-12-21T19:40:28Zen
dc.date.issued2022-02-15en
dc.date.updated2022-12-21T15:31:10Zen
dc.description.abstractHydrogels are crosslinked polymer networks swollen with an aqueous solvent, and play central roles in biomicrofluidic devices. In such applications, the gel is often in contact with a flowing fluid, thus setting up a fluid-hydrogel two-phase system. Using a recently proposed model (Young et al. [41] 2019), we treat the hydrogel as a poroelastic material consisting of a Saint Venant-Kirchhoff polymer network and a Newtonian viscous solvent, and develop a finite-element method for computing flows involving a fluid-hydrogel interface. The interface is tracked by using a fixed-mesh arbitrary Lagrangian-Eulerian method that maps the interface to a reference configuration. The interfacial deformation is coupled with the fluid and solid governing equations into a monolithic algorithm using the finite-element library deal.II. The code is validated against available analytical solutions in several non-trivial flow problems: one-dimensional compression of a gel layer by a uniform flow, two-layer shear flow, and the deformation of a Darcy gel particle in a planar extensional flow. In all cases, the numerical solutions are in excellent agreement with the analytical solutions. Numerical tests show second-order convergence with respect to mesh refinement, and first-order convergence with respect to time-step refinement.en
dc.description.versionAccepted versionen
dc.format.extent22 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 110851 (Article number)en
dc.identifier.doihttps://doi.org/10.1016/j.jcp.2021.110851en
dc.identifier.eissn1090-2716en
dc.identifier.issn0021-9991en
dc.identifier.orcidYue, Pengtao [0000-0001-8343-846X]en
dc.identifier.urihttp://hdl.handle.net/10919/112970en
dc.identifier.volume451en
dc.language.isoenen
dc.publisherAcademic Press/Elsevieren
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000762477300001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectFixed-mesh ALE methoden
dc.subjectPoroelasticity modelen
dc.subjectFluid-structure interactionen
dc.subjectHyperelasticityen
dc.subjectPermeabilityen
dc.subjectPOROUS-MEDIUMen
dc.subjectHOMOGENEOUS FLUIDen
dc.subjectMOMENTUM-TRANSFERen
dc.subjectDRUG-DELIVERYen
dc.subjectBOUNDARYen
dc.subjectFLOWen
dc.titleAn arbitrary Lagrangian-Eulerian method for simulating interfacial dynamics between a hydrogel and a fluiden
dc.title.serialJournal of Computational Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hydrogel.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description:
Accepted version