A note on best approximation and invertibility of operators on uniformly convex Banach spaces

dc.contributor.authorHolub, James R.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2019-05-20T11:50:23Zen
dc.date.available2019-05-20T11:50:23Zen
dc.date.issued1991-01-01en
dc.date.updated2019-05-20T10:37:52Zen
dc.description.abstractIt is shown that if X is a uniformly convex Banach space and S a bounded linear operator onX for which ?I-S?=1, then S is invertible if and only if ?I-12S? <1. From this it follows thatif S is invertible on X then either (i) dist(I,[S])<1, or (ii) 0 is the unique best approximation toI from [S], a natural (partial) converse to the well-known sufficient condition for invertibility thatdist(I,[S])<1.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationJames R. Holub, "A note on best approximation and invertibility of operators on uniformly convex Banach spaces," International Journal of Mathematics and Mathematical Sciences, vol. 14, no. 3, pp. 611-614, 1991. doi:10.1155/S0161171291000832en
dc.identifier.doihttps://doi.org/10.1155/S0161171291000832en
dc.identifier.urihttp://hdl.handle.net/10919/89574en
dc.language.isoenen
dc.publisherHindawi Publishing Corpen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderCopyright © 1991 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleA note on best approximation and invertibility of operators on uniformly convex Banach spacesen
dc.title.serialInternational Journal of Mathematics and Mathematical Sciencesen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
IJMMS.1991.567578.pdf
Size:
256.81 KB
Format:
Adobe Portable Document Format
Name:
IJMMS.1991.567578.xml
Size:
4.73 KB
Format:
Extensible Markup Language
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: