Differential Effects of Oleuropein and Hydroxytyrosol on Aggregation and Stability of CFTR NBD1-ΔF508 Domain
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Cystic Fibrosis (CF) is caused by loss of function mutations in the Cystic Fibrosis transmembrane conductance regulator (CFTR). The folding and assembly of CFTR is inefficient. Deletion of F508 in the first nucleotide binding domain (NBD1-ΔF508) further disrupts protein stability leading to endoplasmic reticulum retention and proteasomal degradation. Stabilization and prevention of NBD1-ΔF508 aggregation is critical to rescuing the folding and function of the entire CFTR channel. We report that the phenolic compounds Oleuropein and Hydroxytryosol reduce aggregation of NBD1-ΔF508. The NBD1-ΔF508 aggregate size was smaller in the presence of Hydroxytryosol as determined by dynamic light scattering. Neither phenolic compound increased the thermal stability of NBD1-ΔF508 as measured by differential scanning fluorimetry. Interestingly, Hydroxytyrosol inhibited the stabilizing effect of the indole compound BIA, a known stabilizer, on NBD1-ΔF508. Molecular docking studies predicted that Oleuropein preferred to bind in the F1-type core ATP-binding subdomain in NBD1. In contrast, Hydroxytyrosol preferred to bind in the α4/α5/α6 helical bundle of the ABCα subdomain of NBD1 next to the putative binding site for BIA. This result suggests that Hydroxytyrosol interferes with BIA binding, thus providing an explanation for the antagonistic effect on NBD1 stability upon incubation with both compounds. To our knowledge, these studies are the first to explore the effects of these two phenolic compounds on the aggregation and stability of NBD1-ΔF508 domain of CFTR.